

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 410

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATION I
STREAM: Y4S1

DAY:
TUESDAY
TIME:
9.00-11.00 A.M.

DATE:
24/03/2009

INSTRUCTIONS:

ANSWERQUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a. What is P.D.E?
b. Explain what you understand by the term "compatible equations" in PDE.
c. Form a first order PDE from the equation $a x^{2}+b y^{2}+z^{2}=1$
d. Use Charpit's method to find the complete integral of the equation:

$$
\begin{equation*}
p^{2} z^{2}=1-q^{2} \tag{6marks}
\end{equation*}
$$

e. Use Jacobi's method to find the complete solution of the differential equation

$$
z p x+y^{2} q^{2}-z^{2}=0
$$

f. Find the equation of the tangent plane to the surface $\frac{x^{2}}{16}+\frac{y^{2}}{9}=\frac{z^{2}}{8} \quad$ at the point (4,3,4).
g. Find the complete integral of the PDE: $\mathrm{zpq}=\mathrm{p}+\mathrm{q}$

QUESTION TWO (20 MARKS)

a. Define the following terms as used in PDE:
(i) Complete integral
(2 marks)
(ii) General integral
(2 marks)
b. Hence use Cauchy's method to find the complete integral of the equation

$$
\left(y^{2}-z^{2}\right) p-x y q=x z \text { containing } \mathrm{x}=\mathrm{y}=\mathrm{z}, \mathrm{x}>0
$$

c. Use charpit's method to find the complete integrals of the following differential equations:

$$
\begin{equation*}
\mathrm{P}^{x^{5}}-4 q^{3} x^{2}+6 x^{2} z-2=0 \tag{7marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a. Find the integral curves of the following simultaneous differential equation:
(i) $\frac{d x}{2 x z}=\frac{d y}{-2 y z}=\frac{d z}{x^{2}-y^{2}}$
(5 marks)
(ii) $\frac{d x}{x\left(4 y^{2}-4 z^{2}\right)}=\frac{-d y}{y\left(z^{2}+9 x^{2}\right)}=\frac{d z}{z\left(9 x^{2}+y^{2}\right)}$
(5 marks)
b. Find the equations for the tangent plane to the surface

$$
\begin{gathered}
x^{2} y z+3 y^{2}-2 x z^{2}=8 z \\
\text { at the point }(1,2,-1) .
\end{gathered}
$$

c. Test for integrability. Hence find the primitive of $\left(x-x^{2} y\right) d y+y d x=0$.

QUESTION FOUR (20 MARKS)

a. Show that the following pair of surfaces are tangent at the point $(3,3,0)$

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=18 \\
x y=9
\end{gathered}
$$

(7 marks)
b. Test whether the differential equation $p^{2} z^{2} y^{2} d x+q^{2} x^{2} z^{2} d y+r^{2} x^{2} y^{2} d z=0$ is integrable. Hence solve using separation of variables method where p, q and r are constants.
c. Find the orthogonal trajectories of the surfaces: $3 x^{2}+4 y^{2}+8 z^{2}-36=0$ and

$$
\begin{equation*}
x^{2}+2 y^{2}-4 z^{2}-6=0 \tag{7marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a. Verify that the following differential equations are homogeneous and integrable and hence find the primitive :

$$
\operatorname{yzdx}+\left(x^{2} y-2 x\right) d y+\left(x^{2} z-x y\right) d z=0
$$

(10 marks)
b. Verify whether the following equation is integrable and hence solve:

$$
\begin{equation*}
z y^{2} d x+z x^{2} d y-x^{2} y^{2} d z=0 \tag{6marks}
\end{equation*}
$$

c. Solve the pfaffian differential equation $\mathrm{e}^{\mathrm{x} 2-\mathrm{y}^{2}}+\frac{y}{x^{2}} \frac{d y}{d x}=0$ using separation of variables. (4 marks)

