

UNIVERSITY

EXAMINATIONS
2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 410
COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS
STREAM: Y4S1
DAY: MONDAY
TIME: $\quad 9.00-11.00$ A.M.
DATE:
10/08/2009

INSTRUCTIONS TO CANDIDATES:
ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a. Find the integral curves of the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{dx}}{x\left(4 y^{2}-z^{2}\right)}=\frac{-d y}{y\left(z^{2}+9 x^{2}\right)}=\frac{d z}{z\left(9 x^{2}+4 y^{2}\right)} \tag{3marks}
\end{equation*}
$$

b. Find the general solution $\mathrm{u}(\mathrm{x}, \mathrm{y})$ of $u_{x x x}+u_{x}=0$
c. Find the orthogonal trajectories on the surface $x^{2}+y^{2}+2 f y z+d=0$ of its curve s of intersection with the planes parallel to the plane $\mathrm{z}=0$.
d. Solve the following homogeneous differential equation:

$$
\left(y^{3}+2 x y z\right) d x+\left(4 x y^{2}+2 x^{2} z\right) d y+x^{2} y=0
$$

e. Determine whether the following differential equation is integrable and hence find the primitive: $2 x z d x+z d y-d z=0$
f. Form PDEs by eliminating the arbitrary constants in following equations:
(i) $\quad \mathrm{z}=\mathrm{y}^{2}+\mathrm{f}\left(\frac{1}{\mathrm{x}}+\ln \mathrm{y}\right)$
(ii) $x^{2}+y^{2}+(z-c)^{2}=a^{2}$

QUESTION TWO (20 MARKS)

a. Verify that $\mathrm{v}=$ sinwct sinwx is a solution of the equation: $\frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial x^{2}}$
b. Show that $u=f\left(x^{2}-y^{2}\right)$ is a solution of $\mathrm{y} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+x \frac{\partial u}{\partial y}=0$
c. Find the equation of the tangent plane to the surface $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$
d. Find the orthogonal trajectories on the surface $(\mathrm{x}+\mathrm{y}) \mathrm{z}=1$ which is cut by the planes x $-\mathrm{y}+\mathrm{z}=\mathrm{k}$ where k is a constant.

OUESTION THREE (20 MARKS)

a. Form first order PDEs by eliminating the arbitrary constants in the following:

$$
\begin{align*}
& \text { (i) } \quad 2 \mathrm{z}=(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b} \tag{i}\\
& \text { (ii) } \\
& \mathrm{z}=\mathrm{xy}+\mathrm{f}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
\end{align*}
$$

b. Use Charpit's method to solve the following first order PDEs:
(i)

$$
2 z x-p x^{2}-2 q x y+p q=0
$$

(ii) $\left(p^{2}+q^{2}\right) y=q z$

QUESTION FOUR (20 MARKS)

a. Solve the following linear PDEs:
(i) $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$ (5 marks)
(ii) $\quad\left(y^{3}-2 x^{3}\right) x p+\left(2 y^{3}-x^{3}\right) y q=9 z\left(x^{3}-y^{3}\right)$
b. Solve the following special types of PDEs:
(i) $\mathrm{z}^{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}+1\right)=1$
(ii) $\quad \mathrm{zpq}=\mathrm{p}+\mathrm{q}$
(4 marks)

OUESTION FIVE (20 MARKS)

a. Use Jacob's method to solve the following PDEs:
(i) $p^{2} q^{2}+x^{2} y^{2}=x^{2} q^{2}\left(x^{2}+y^{2}\right)$
(ii) $\mathrm{p}+\mathrm{q}=\mathrm{pq}$
(5 marks)
b. Use Cauchy's method to find the solutions of the following PDEs satisfying the given conditions:
(i) $\mathrm{p}+\mathrm{q}-\mathrm{z}=0, \mathrm{z}=1+\cos \mathrm{x}$ when $\mathrm{y}=2 \mathrm{x}$
(5 marks)
c. Find the general integrals of the following linear PDE:

$$
\begin{equation*}
\mathrm{z}(\mathrm{xp}-\mathrm{yq})=y^{2}-x^{2} \tag{5marks}
\end{equation*}
$$

