

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 410

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS

STREAM:
DAY:
TIME:
DATE:
28/11/2008

INSTRUCTIONS TO CANDIDATES:

1. Answer Question ONE and any other TWO of the remaining.
2. All the working MUST be shown clearly

QUESTION ONE (30 MARKS)

(a) The acceleration of a particle moving in straight line is the negative of its velocity.

If it starts from the origin with a velocity of 1 , find its position at the end of two units of time.
(5 mks)
(b) Show that the surface $x^{2}+2 y z+y^{3}=4$ is perpendicular to any member of the family the surface $x^{2}+1=(2-4 a) y^{2}+a z^{2}$ at a point of intersection $(1,-1,2)$
(c) Solve the equation

$$
\begin{equation*}
(y+z) p+y q=x-y \tag{5mks}
\end{equation*}
$$

(d) Verify that the following Pfaffian differential equation is intergrable and solve

$$
\begin{equation*}
y d x-(x+z) d y+y d z=0 \tag{5mks}
\end{equation*}
$$

(e) Find the surface integrals of the following equation

$$
\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{z}
$$

(f) Calculate the equation of the tangent plane at the point $(2,1,-2)$ to the surface

$$
\begin{equation*}
x^{2}+2 y^{2}+2 z^{2}=14 \tag{5mks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

(a) Obtain the partial differential equation of the following equations where \mathbf{a} and \mathbf{b} are constants.

$$
\begin{equation*}
\text { (i) } z=(x+a)(y+b) \tag{4mks}
\end{equation*}
$$

(ii) $\phi=\left(y e^{z}, x^{2} e^{z}\right)=0$
(b) Verify whether the following equation is integrable, and hence of otherwise solve;-

$$
\begin{equation*}
z y^{2} d x+z x^{2} d y-x^{2} y^{2} d z=0 \tag{6mks}
\end{equation*}
$$

(b) Show that the following Pfaffian differential equation

$$
2 x\left(x^{3}+y^{3}\right) d x+3\left(x^{2} y^{2}+y^{4}\right) d y=0
$$

is an exact differential. Hence, or otherwise find its primitive.

QUESTION THREE (20 MKS)

(a) Calculate the integral surface of the quasi - linear partial differential equation

$$
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)
$$

which contains the straight line $x+y=0, z=1$
(b) Verify whether the partial differential equation

$$
\begin{aligned}
& x p-y q=0 \\
& z(x p+y q)-2 x y=0, \text { are compatible. }
\end{aligned}
$$

Hence or otherwise find their solution
(c) Use Charpits methods to find the complete integral of the partial differential equations

$$
\begin{equation*}
p^{2} x+q^{2} y=z \tag{7mks}
\end{equation*}
$$

QUESTION FOUR (20 MKS)

(a) Determine orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersection with the family of planes parallel to $z=0$
(b) (i) Determine the value of b so that the differential equation

$$
(3 x-5 y+7) d x+(b x+6 y+9) d y=0
$$

will be exact and solve it.
(ii) Find the integrating factor of the following differential equation and solve it.

$$
\begin{equation*}
2 x^{2} y d x+\left(x^{3}+2 x y\right) d y=0 \tag{6mks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

(a) Find the integral curves of the following simultaneous differential equations;

$$
\begin{aligned}
& \text { (i) } \frac{d x}{2 x z}=\frac{d y}{2 y z}=\frac{d z}{z^{2}-x^{2}-y^{2}} \\
& \text { (ii) } \frac{d x}{x+y}=\frac{d y}{x+y}=\frac{d z}{-(x+y+2 z)}
\end{aligned}
$$

(c) (i) Find the equation of the tangent plane to the surface

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=18 \text { at the point }(3,3,0) \tag{5mks}
\end{equation*}
$$

(ii) Show that the surfaces defined by $x^{2}+4 y^{2}-4 z^{2}-4=0$ and

$$
x^{2}+y^{2}-z^{2}-6 x-6 y+2 z+10=0 \text { are tangent at point }(2,1,1) \quad(\mathbf{5} \mathbf{~ m k s})
$$

