

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: MATH 410

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS
STREAM: SESSION VII \& VIII
DAY:
THURSDAY
TIME:
2.00-4.00 P.M.

DATE:
09/04/2009

INSTRUCTIONS:
ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

PLEASE TURN OVER OUESTION ONE(30 MARKS)
a. Calculate the integral curves of the following equations:
(i) $\frac{d x}{6 y-6 z}=\frac{2 d y}{3 z-3 x}=\frac{3 d z}{2 x-2 y}$
(5 marks)
(ii) $\frac{d x}{-x z^{3}+x y^{3}}=\frac{d y}{y z^{3}-y x^{3}}=\frac{d z}{-z y^{3}+x^{3} z}$
(5 marks)
b. Find the first order PDE whose complete integral is: $(x-a)^{2}+(y-b)^{2}=z^{2}$ where a, b and α are constants.
(5 marks)
c. Find the orthogonal trajectories on the surface $2 y-x^{2}=0$ orthogonal to its intersection with the system $\mathrm{x} y=z+c$.
d. Solve the following homogeneous Pfaffian differential equation:

$$
\begin{equation*}
(2 x-y) d y-(x-2 y) d x=0 \tag{6marks}
\end{equation*}
$$

f. Show that the function $u=f\left(x^{2}+y^{2}\right)$ where f is an arbitrary function is a solution of

$$
\begin{equation*}
y u_{x}-x u_{y}=0 \tag{4marks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

a. Verify whether the following equations are integrable and hence solve:
(i) $\quad(y d x+x d y)(a-z)+x y d z=0$
(ii) $\left(y^{2}-z^{2}\right) d x+\left(x^{2}-z^{2}\right) d y+(x+y)(x+y+2 z) d z=0$
b. Verify that the following differential equations are homogeneous and hence solve:
(i) $\quad y z(y+z) d x+x z(x+z) d y+x y(x+y) d z=0$
(ii)

$$
\left(2 y z+3 x y+4 x^{2}\right) d x+\left(x z+x^{2}\right) d y+x y d z=0
$$

QUESTION THREE (20 MARKS)

a. Obtain the first order PDEs of the following equations where a and b are constants:
(i) $\mathrm{z}=(\mathrm{x}+\mathrm{a})(\mathrm{y}+\mathrm{b})$
(5 marks)
(ii) $a x^{2}+b y^{2}+z^{2}=1$
(5 marks)
(iii) $2 \mathrm{z}=(a x+y)^{2}+b$
(5 marks)
b. Use charpit's method to find the complete integrals of the following differential equation: $\left({ }^{2}+{ }^{2}\right) y=q z$

QUESTION FOUR (20 MARKS)

a. Use Cauchy's method to find the solutions of the following PDEs satisfying the prescribed conditions: $\mathrm{p}-\mathrm{yq}+\mathrm{z}=\mathrm{x}, \mathrm{z}=$ when $\mathrm{y}=\mathrm{x}$
(10 marks)
b. Find the general solution of the equation $(y+z) p+y q=x-y$ whose integral surface contains the curve $\mathrm{y}=1, \mathrm{z}=1+\mathrm{x},-\infty<\mathrm{x}<\infty$.
(10 marks)

QUESTION FIVE (20 MARKS)

a. Use Jacobi's method to find the complete integrals of the following equation:

$$
2+{ }^{2}=\quad \quad(5 \text { marks })
$$

b. Find a complete integral of the PDE: $z=p^{2}-q^{2}$
c. Find a complete integral of the Clairaut's equation: $(p+q)(z-x p-y q)=1 \quad$ (5 marks)
d. Find a complete integral of the following PDE: $\quad(+\quad)=+$ (5 marks)

