KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 422

COURSE TITLE: RADIATION AND NUCLEAR CHEMISTRY

- STREAM: Y4S2
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 06/08/2009

INSTRUCTIONS TO CANDIDATES:

Attempt all questions

Each Question = 17.5 marks, Periodic Table provided,

Mass of particles: 1 proton = 1.0073 amu, 1 neutron = 1.0087 amu, 1 electron = 0.00054858 amu , 1 joule = $1 \text{ Kgm}^2/\text{s}^2$, 1 amu = $1.66056520 \times 10^{-24}$ gms, Avogadro's No = 6.022×10^{23}

 $C = 3.0 \text{ x } 10^8 \text{ m/s}$

PLEASE TURN OVER

- 1. (a) (i) Explain why the sum of the masses of all nucleons in a nucleus are not equal to the mass of the actual nucleus.(2 mks)
 - (ii) Describe what is meant by "magic number" of nucleons. Give examples (2 mks)
 - (iii) Compare and discuss the behaviors of α , β and γ radiation in an electric field, magnetic field and in various shielding materials. (4.5 mks)
 - (b) Calculate the following for ${}^{63}_{29}$ Cu (actual mass = 62.9298 amu): (6 mks)
 - (i) Mass deficiency in amu per atom
 - (ii) Mass deficiency in grams per mole
 - (iii) Binding energy in joules per mole

(c) Write the symbols for the daughter nuclei in the following radioactive decay: $(\beta = e^{-1})$

(3 mks)

(i)	$^{237}_{92}U$ - β	(ii) $^{13}C \longrightarrow$
(iii)	¹¹ B -γ	(iv) ²²⁴ Ra $-\alpha$
(v)	18 F $-p$	(vi) $^{40}_{19}$ K \rightarrow

2. (a) (i) As the atomic number of an atom increases, the neutron / proton ratio increases. What does this suggest in nuclear stability? (2 mks)

- (ii) Consider a radioactive nuclide with a neutron / proton ratio that is larger than those for the stable isotopes of that element. What mode(s) of decay might be expected for this nuclide and why?
 (2 mks)
- (iii) Both barium-123 and barium- 140 are radioactive. Which is more likely to have longer half-life? Explain. (3 mks)
- (b) Write nuclear equation for each of the following bombardment processes: (6 mks)

(i) ${}^{113}_{48}$ Cd (n, γ) ${}^{114}_{48}$ Cd (ii) ${}^{6}_{2}$ Li (n, α) ${}^{3}_{1}$ H (iii) ${}^{2}_{1}$ H (γ, p) X. Identify X

(c) Write the nuclear equations for the following processes:	(4.5 mks)	
(i) Two deuterium ions undergoing fusion to give ${}^{3}_{2}$ He and a neutron.		
(ii) A nuclide is bombarded by a neutron to form ${}^{7}_{3}$ Li and an α -particle (identify the		
unknown nuclide).		
(iii) 14 ₇ N is bombarded by a neutron to form three α -particles and an atom	n of tritium.	
3. (a) (i) What does the half-life of a radionuclide represent?	(2.5 mks)	
(ii) Explain how the stability of radionuclides is when compared in terms of half-life?		
	(2 mks)	
(b) (i) The half-life of Oxygen-19 is 29 seconds. What percentage of the isotope originally		
present would be left after 5.0 seconds?	(4 mks)	
(ii) The activity of a sample of tritium decreased by 5.5% over a period of a year. What is		
the half-life of tritium?	(4mks)	
(c) A sample of waste has a radioactivity, caused by strontium-90 (beta emitter, half-life =		
28.1 years) of 0.245 Cig ⁻¹ . How many years will it take for its activity to decrease to		
1.00 x 10 ⁻⁶ Cig ⁻¹ ?	(5 mks)	
4. (a) (i) Describe the method of radiocarbon dating in determining the age of a material.		
	(5.5 mks)	
(ii) What factors limit the use of radiocarbon dating?	(3 mks)	
(b) What are the major advantages and disadvantages of fusion as a potential en	nergy source	
compared with fission?	(4 mks)	
(c) A piece of wood taken from a cave dwelling in New Mexico is found to ha	ve a carbon-14	
activity (per gram of carbon) only 0.636 times that of woodcut today. Calcu	ulate the age of	
(b) What are the major advantages and disadvantages of fusion as a potential encompared with fission?	nergy source (4 mks)	
activity (per gram of carbon) only 0.636 times that of woodcut today. Calcu	ulate the age of	

(5 mks)

the wood.