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INSTRUCTIONS  

 
1. Answer Question ONE and any other TWO Questions 

2. Show ALL your workings. 
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QUESTION ONE (30 MARKS) COMPULSORY 

(a)  Prove the following properties of an ordered field. 

 (i)  a + c = b + c implies a = b       (2 mks) 

 (ii)  a + x = a, ∀ a ,then x = 0      (2 mks) 

 (iii)  ax = 1, ∀  a then x = a
-1

      (2 mks) 

 

(b)  show that A and B are non-empty sets of real numbers with C= A+B where;  

       C={x + y:   x∈A, y∈B}show that; supC =supA +supB   (4 mks) 

 

(c)  What do you understand form the following terminologies? 

 (i)  Extended real number system      (1 mk) 

 (ii)  Continum property       (1 mk) 

 (iii)  Supremum         (1 mk) 

 (iv)  Infimum        (1 mk) 

 

(d)  Prove that  
13

13

−

+
  is an irrational number    (5 mks) 

 

(e)  Show that every subset of  N numbers which is not empty has a minimum. 

           (5 mks) 

 

(f)  State and prove the sandwich theorem for sequences.  Hence prove that: 

  1+n  -  n  →0 as n → ∞        (6 mks) 

 

QUESTION TWO    (20 MARKS) 

 

(a)  Define a metric space.       (4 mks) 

 

(b) Show that  

 (i)  if E ⊆ F then E
o
⊆ F       (3 mks) 

 (ii)  E is  open iff E = E
o
       (3 mks) 

(c)  Suppose that Xn → L as n → ∞  show that the following two conditions holds.   

 (i)  Xn ≥ a, [n = 1,2……..]; then L≥ a.     (5 mks) 

 (ii) Xn ≤ b [n = 1,2……...]; then L  ≤ b.     (5 mks) 
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QUESTION THREE (20 MKS) 

(a)  Define a divergent sequence.      (2 mks) 

 

(b)  Show that a sequence {(-1)
n
} is bounded by 1 but is divergent.             (2 mks) 

 

(c)  State and prove Cauchy’s criterion for limits of functions.  (10 mks)               

              

QUESTION FOUR (20 MARKS) 

 

(a)  Let {Xn} and {Yn} be two sequences converging to L and h respectively as n → ∞  

then show that: 

 (i)  Xn + Yn   →  L + h       (5 mks) 

 (ii)  Xn Yn →  Lh        (5 mks) 

 

(b)  Show the uniqueness of a limit in a sequence.    (5 mks) 

 

(c)   Show that a set S of real numbers is bounded iff ∃  a real number k such that │x│≤ k 

sx ∈∀ .         (5 mks) 

 

QUESTION FIVE (20 MARKS) 

(a)  State and prove the intermediate value theorem for continuous functions. (I.V.T)  

                                                                                                                        (7 mks) 

(b)  Let f:D → R be uniformly continuous  on the set D and suppose {Xn) is the Cauchy 

sequence, then f{Xn} is also Cauchy sequence in R.    (6 mks) 

 

(c)  Let F be defined on an open interval J, which contains X0.  If  f  is differentiable at 

X0, then show that f is continuous at X0.     (7 mks) 

 

QUESTION SIX (20 MARKS) 

 

a) Define real analysis.         (3 mks) 

b) Prove Abel’s theorem 1= 0        (14 mks) 

c) Are you ready for Real analysis II ?      (3 mks) 

 

       


