KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 221

COURSE TITLE: REAL ANALYSIS I

- STREAM: Y2S2
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M
- DATE: 17/12/2007

INSTRUCTIONS

- 1. Answer Question **ONE** and any other **TWO** Questions
- 2. Show **ALL** your workings.

PLEASE TURN OVER

QUESTION ONE (30 MARKS) COMPULSORY

(a) Prove the following properties of an ordered field.

(i) $a + c = b + c$	c implies $a = b$	(2 mks)
(ii) $a + x = a$,	\forall a ,then x = 0	(2 mks)

- (iii) ax = 1, \forall a then $x = a^{-1}$ (2 mks)
- (b) show that A and B are non-empty sets of real numbers with C= A+B where; C={x + y: $x \in A, y \in B$ }show that; *sup*C =*sup*A +*sup*B (4 mks)
- (c) What do you understand form the following terminologies?
 - (i) Extended real number system(1 mk)(ii) Continum property(1 mk)(iii) Supremum(1 mk)(iv) Infimum(1 mk)

(d) Prove that
$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$
 is an irrational number (5 mks)

(e) Show that every subset of N numbers which is not empty has a minimum.

(5 mks)

(f) State and prove the sandwich theorem for sequences. Hence prove that: $\sqrt{n+1} - \sqrt{n} \rightarrow 0 \text{ as } n \rightarrow \infty$ (6 mks)

QUESTION TWO (20 MARKS)

- (a) Define a metric space. (4 mks)
- (b) Show that
 - (i) if $E \subseteq F$ then $E^{o} \subseteq F$ (3 mks)
 - (ii) E is open iff $E = E^{\circ}$ (3 mks)
- (c) Suppose that $X_n \rightarrow L$ as $n \rightarrow \infty$ show that the following two conditions holds. (i) $X_n \ge a$, [n = 1, 2, ..., n]; then $L \ge a$. (5 mks) (ii) $X_n \le b$ [n = 1, 2, ..., n]; then $L \le b$. (5 mks)

QUESTION THREE (20 MKS)

(a)	Define a divergent sequence.	(2 mks)
(b)	Show that a sequence $\{(-1)^n\}$ is bounded by 1 but is divergent.	(2 mks)
(c)	State and prove Cauchy's criterion for limits of functions.	(10 mks)

QUESTION FOUR (20 MARKS)

(a) Let $\{X_n\}$ and $\{Y_n\}$ be two sequences converging to L and h respectively as $n \to \infty$ then show that:

(i) $X_n + Y_n \rightarrow L + h$	(5 mks)
(ii) $X_n Y_n \rightarrow Lh$	(5 mks)

(b) Show the uniqueness of a limit in a sequence. (5 mks)

(c) Show that a set S of real numbers is bounded iff \exists a real number k such that $|x| \le k$ $\forall x \in s$. (5 mks)

QUESTION FIVE (20 MARKS)

State and prove the intermediate value theorem for continuous functions. (I.V.T)	
	(7 mks)
(b) Let $f: D \rightarrow R$ be uniformly continuous on the set D and sup	pose $\{X_n\}$ is the Cauchy
sequence, then $f{X_n}$ is also Cauchy sequence in <i>R</i> .	(6 mks)

(c) Let F be defined on an open interval J, which contains X_0 . If f is differentiable at X_0 , then show that f is continuous at X_0 . (7 mks)

QUESTION SIX (20 MARKS)

a)	Define real analysis.	(3 mks)
b)	Prove Abel's theorem $1=0$	(14 mks)
c)	Are you ready for Real analysis II ?	(3 mks)