UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS \& MATHEMATICS

COURSE CODE: MATH 311

COURSE TITLE: REAL ANALYSIS II
STREAM: Y3S1
DAY:
THURSDAY
TIME: $\quad 11.00-1.00$ P.M
DATE: 11/12/2008

INSTRUCTIONS TO CANDIDATES:

1. Answer Question ONE and any other TWO Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Suppose that f is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b) then show that
(i) $f^{1}(x) \geq 0 \quad \forall x \in(a, b)$ then f is increasing
(ii) $f^{1}(x) \leq 0 \quad \forall x \in(a, b) \quad$ then f is decreasing
(b) Let $\left\{x_{0}, x_{1},-----x_{n}\right\}$ be a partition of [a, b] such that $a=x_{0}<x_{1}<---<x_{n}=b$. Let $f(x)$ be increasing function defined on $[\mathrm{a}, \mathrm{b}]$. Show that

$$
\begin{equation*}
\sum_{k=1}^{n}\left\{f\left(x_{k}^{+}\right)-f\left(x_{k}^{-}\right)\right\}=f(b)-f(a) \tag{6mks}
\end{equation*}
$$

(c) Define the following terminologies
(i) a partition
(ii) Bounded variation
(d) If f is monotonic on [a, b], then f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$
(e) Show that $S_{n}(x)=\frac{n x^{2}}{1+n x}$ converses uniformly to $S(x)=x$ on $A=[0,1]$

QUESTION TWO (20 MARKS)

(a) (i) Define the term Darboux Riemann intergration.
(3 mks)
(ii) Show that the function f defined on $[\mathrm{a}, \mathrm{b}]$ by:

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } \mathrm{x} \text { is irrational } \\
1 \text { if } \mathrm{x} \text { is rational }
\end{array}\right.
$$

is not Riemann integrable on [a, b]
(b) Prove that the function f is Riemann-steitejes integrable iff $\forall \in>0$
\exists a partition p on $[\mathrm{a}, \mathrm{b}]$ such that

$$
\begin{equation*}
U(f, p, \alpha)-L(f, p, \alpha)<\varepsilon \tag{11mks}
\end{equation*}
$$

QUESTION THREE (20 MKS)

(a) If P^{*} is a refinement of P and $\mathrm{P} \subseteq \mathrm{P}^{*}$ where P is a partition of $[\mathrm{a}, \mathrm{b}]$, show that

$$
\begin{equation*}
\mathrm{L}(f, p, \alpha) \leq L\left(f, p^{*}, \alpha\right) \tag{10mks}
\end{equation*}
$$

(b) Let $f \in \mathrm{~B} . \mathrm{V}[\mathrm{a}, \mathrm{b}]$ and consider the function F defined on $[\mathrm{a}, \mathrm{b}]$ by

$$
\mathrm{F}(\mathrm{x})= \begin{cases}V_{f}(a, x) & \text { if } a<x \leq b \\ 0 & \text { if } a=x\end{cases}
$$

show that F and $\mathrm{F}-\mathrm{f}$ are both increasing functions on $[\mathrm{a}, \mathrm{b}]$
(10 mks)

QUESTION FOUR (20 MKS)

(a) Let S be the interval $[a, b]$ if the sequence $\{f n(x)\}$ of R - integrable functions on S , then show uniformly to $f(x)$ on S , the show that $f(x)$ is R - integrable. ($\mathbf{1 0} \mathbf{~ m k s)}$
(b) Let $f(x)=\left\{\begin{array}{rl}x^{2} \cos \frac{1}{x} & \text { if } \mathrm{x} \neq 0 \\ 0 & \text { if } \mathrm{x}\end{array}=0\right.$ then, show that f is \mathbf{B}. V . on $[0,1]$ if f is continuous on $[0,1]$ and $f^{1}(x)(\mathbf{5} \mathbf{~ m k s})$
(c) Define total variation.

QUESTION FIVE (20 MARKS)

(a) Show that if the series converges when $x=y$ then it converges for all x and x_{0} is the midpoint is the interval where $\left|x-x_{0}\right|=\left|y-y_{0}\right|$ holds.
(b) Let $f \in B V[a, b]$ and let $\mathrm{a}<\mathrm{c}<\mathrm{b}$ show that $\mathrm{V}_{\mathrm{f}}[\mathrm{a}, \mathrm{b}]=\mathrm{V}_{\mathrm{f}}[\mathrm{a}, \mathrm{c}]+\mathrm{V}_{\mathrm{f}}[\mathrm{c}, \mathrm{b}]$

