KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 311

- COURSE TITLE: REAL ANALYSIS II
- STREAM: Y3S1
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 13/08/2009

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Suppose that f is continuous on [a, b] and differentiable on (a, b) show that,

(i) If $f^{1}(x) \ge 0 \quad \forall x \in (a, b)$, then f is monotonic increasing. (5 marks)

(ii) If
$$f^{1}(x) \le 0 \quad \forall x \in (a, b)$$
, then is monotonic decreasing. (5 marks)

(b) Let $f \in BV[a, b]$, and consider function F defined on [a, b] by

 $F(x) = \begin{cases} V_f(a, x) & \text{if } a < x \le b \\ 0 & \text{if } x = a \end{cases}$

Show that F and F - f are both increasing.

(7 marks)

- (c) Evaluate (i) $\int_0^3 x d(|x| x)$ (4 marks)
 - (ii) $\int_{-2}^{5} x^2 d(|x| + [x])$ (5 marks)

(iii)
$$\int_0^{\pi} \cos x \, d \, (\cos x - x) \tag{4 marks}$$

QUESTION TWO (20 MARKS)

(a)	Define Bounded Variation.	(4 marks)
(b)	If f is continuous on [a, b] and f^1 exists and is bounded say $f^1(x) \le A$ then sh $f \in BV[a, b]$.	now that (8 marks)

(c) Show that if $f \in BV[a, b]$ then f is bounded on [a, b]. (8 marks)

QUESTION THREE (20 MARKS)

Define total Variation.	(4 marks)
	Define total Variation.

(b) Let $f \in BV[a, b]$ and let a < c < b. Show that the total variation of the function in

$$BV[a, b]$$
 is $V_f[a, b] = V_f[a, c] + V_f[c, b]$ (10 marks)

(c) If f and g are continuous on [a, b], then show that;

$$\left[\int_{a}^{b} f(x)g(x)dx\right]^{2} \leq \int_{a}^{b} (f(x))^{2}dx \int (g(x)^{2}dx$$
 (6 marks)

QUESTION FOUR (20 MARKS)

- (a) Let P* be refinement of P, then show that $L(f, p, \alpha) \leq L(f, p^*, \alpha)$ (8 marks)
- (b) Show that $\int_{a}^{b} f d \propto \leq \int_{a}^{b} f d \propto$ (6 marks)
- (c) Evaluate;
 - (i) $\int_{0}^{3} X^{3} d(|x|)$ (3 marks)

(ii)
$$\int_0^4 (3x-1) d[X^3]$$
 (3 marks)

QUESTION FIVE (20 MARKS)

(a) Let S be the interval [a, b], if the sequence $\{f_n(x)\}$ of real valued R-intergrable functions on S converges uniformly to f(x) on S then show that $\lim \int_a^b f_n(x) dx = \int_a^b \lim f_n(x) dx$ $= \int_a^b f(x) dx$

(10 marks)

(b) Prove that the more general power series about a point X_0 is given by $\sum_{n=0}^{\infty} C_n (X - X_0)^n$ where X is the variable and $\sum a_n (X - X_0)^n$ converges in an interval with the mid point X_0 . (10 marks)