KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS COURSE CODE: MATH 221

COURSE TITLE: REAL ANALYSIS I

STREAM: Y2S2

DAY: FRIDAY

TIME: 9.00 – 11.00 A.M.

DATE: 25/03/2011

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) State and prove Cauchy's criterion for limits of functions.		(5 marks)
(b) Show that (,) contains both rational and irrational numbers.		(6 marks)
(c) Show that if and are non-empty sets of real numbers with	= + w	vhere
$=\{ + : \in \in \} \text{ show that}$		
= +		(5 marks)

(d) Explain why a function is continuous on (,) but differentiate on a compact [,]

(3 marks)

(e) Prove the following properties of an ordered field

(i)	$+$ = $+$ \Rightarrow =	(2 marks)
(ii)	$+$ = , \forall , then = 0	(2 marks)
(iii)	= 1 , ∀ =	(2 marks)

(f) Define the following terminologies

(i) Denseness of	(2 marks)
(ii) Supremum & infinum.	(3 marks)

QUESTION TWO (20 MARKS)

(a)	State and prove the () hence show that the equation	+ $-1 = 0$ has solution \propto		
	where $0 < \propto < 1$.			(10 marks)
(b)	Prove the uniqueness of a limit in a sequence.			(4 marks)
(c)	Prove that it a sequence () is convergent then its image is	s boun	ded.	(6 marks)

QUESTION THREE (20 MARKS)

(a) Let F be defined on an open interval J which contains \cdot If f is different fractional for the function of the function	ntiable at then
show that f is continuous at \cdot	(5 marks)
(b) (i) Define a metric space	(4 marks)
(ii) Show that (,) = $ x - $ is a metric space.	(6 marks)
(iii) Let (,) be a metric space and then show that is open	= .
	(5 marks)
QUESTION FOUR (20 MARKS)	
(a) Let (be continuous on L then the image of Lunder (is an interval	(Questionalization)

(a)	Let f be continuous on I, then the image of I under f is an interval.	(8 marks)
(b)	Let f be continuous on [,] show that f is bounded on [,].	(7 marks)
(c)	Define a Cauchy sequence and hence show that Cauchy sequences are conve	rgent.

(5 marks)

QUESTION FIVE (20 MARKS)

(a) Define (i) I	Point-wise convergent.	(3 marks)
(ii)	Uniform convergence	(3 marks)
(b) Let { }	be a sequence of functions defined on then show that	\rightarrow
()-	() <	(7 marks)
(c) Let 0 <	< 1 then the sequence () defined by () = \cdot .	Show that it
converges uniformly to $() = 0.$ (7 marks)		