STREAM:
Y2S2
DAY: FRIDAY
TIME:
9.00-11.00 A.M.

DATE:
25/03/2011

INSTRUCTIONS:

Attempt question ONE and any other TWO questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) State and prove Cauchy's criterion for limits of functions.
(b) Show that (,) contains both rational and irrational numbers.
(c) Show that if and are non-empty sets of real numbers with $=+$ where

$$
\begin{aligned}
&=\{+: \in \quad \in \text { show that } \\
&=+
\end{aligned}
$$

(d) Explain why a function is continuous on (,) but differentiate on a compact [,].

(3 marks)

(e) Prove the following properties of an ordered field
(i) $+=+\Rightarrow=$
(ii) $+=, \forall$, then $=0$
(iii) $=1, \forall=$
(2 marks)
(f) Define the following terminologies
(i) Denseness of
(2 marks)
(ii) Supremum \& infinum.

QUESTION TWO (20 MARKS)

(a) State and prove the (. .) hence show that the equation $+\quad-1=0$ has solution \propto where $0<\alpha<1$.
(b) Prove the uniqueness of a limit in a sequence.
(c) Prove that it a sequence $\}$ is convergent then its image is bounded.

QUESTION THREE (20 MARKS)

(a) Let F be defined on an open interval J which contains. If f is differentiable at then show that f is continuous at (5 marks)
(b) (i) Define a metric space
(ii) Show that $()=,|x-|$ is a metric space.
(iii) Let (,) be a metric space and _ then show that is open
$=$
(5 marks)

QUESTION FOUR (20 MARKS)

(a) Let f be continuous on I, then the image of I under f is an interval.
(b) Let f be continuous on [,] show that f is bounded on [,].
(c) Define a Cauchy sequence and hence show that Cauchy sequences are convergent.
(5 marks)
QUESTION FIVE (20 MARKS)
(a) Define (i) Point-wise convergent.
(3 marks)
(ii) Uniform convergence
(b) Let $\}$ be a sequence of functions defined on then show that | () - () | <
(c) Let $0 \ll$ then the sequence $\}$ defined by ()$=$. Show that it converges uniformly to $(\quad)=0$.

