KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/20010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 328

COURSE TITLE: RESEARCH METHODS IN COMPUTER

- STREAM: Y3S2
- DAY: FRIDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/08/2010

INSTRUCTIONS:

- **1.** Answer question ONE and any other two questions
- 2. Show all your working and be neat

PLEASE TURNOVER

QUESTION ONE (30 marks)

- a) Outline research procedure cycle one has to follow for a credible study as taught to you in this course [5 marks]
- b) Assume you have conducted a research for your academic dissertation/project, briefly outline what should appear in each chapter of the university research booklet [5 marks]
- c) Mention three types of sample survey designs normally used for collecting data. State the advantages and disadvantages of the design methods you have mentioned. [5 marks]
- d) Two types of correlation were covered in this course can you describe each one of them and when they are used.
 [5 marks]
- e) Industrial study was conducted by comparing tool wear when treated and untreated. Ten specimens were picked from both treated and untreated. Conduct a suitable hypothesis and draw the conclusion. Estimate a 95% confidence intervals also.($t_{0.025,9}$)=2.262; $t_{0.025,18}$)=2.101)

[10 marks]

Untreated	0.56	0.50	0.69	0.59	0.47	0.42	0.45	0.45	0.47	0.50	
Treated	0.13	0.13	0.18	0.23	0.18	0.31	0.35	0.23	0.31	0.33	

QUESTION TWO (20 marks)

a) The following are burning times of flares of two different types

Тур	be 1	Тур	Type 2			
65	82	64	56			
81	67	71	69			
57	59	83	74			
66	75	59	82			
82	70	65	79			

Test the hypothesis of equal mean burning times. Use $\alpha=0.05$ and tabulated $t(_{0.025,18})=2.101$.[5 marks]

b) A new filtering device was installed in purifying water at KABU. Before installation, a random sample yielded the following information about the percentage of impurity: $\overline{y_1} = 12.5$, $S_1^2 = 101.17$ and $n_1 = 8$. After installation, a random sample yielded $\overline{y_2} = 10.2$, $S_2^2 = 94.73$, and $n_2 = 9$. Can you conclude that the two variances are equal? Has the filtering devices reduced the percentage of impurity significantly? (i.e. test $H_0:\mu_1=\mu_2$ against $H_1:\mu_1\neq\mu_2$). { $F_{0.05(7,8)}=3.23$ }, t(0.025,15)=2.131 [10 marks]

c) A study was conducted to determine performance of security forces by gender. Given the following data, is there any difference in the mean number of incidents handled by men and women police officers? Construct a 95% confidence interval of the differences between the gender means. Tabulated $t_{(0.025,37)}=2.027$.

Men	Women
$\overline{X_1} = 3.2$	$\overline{X_2} = 3.0$
$S_1 = 0.48$	$S_2 = 0.62$
$n_1 = 21$	n ₂ =18

[5 marks]

QUESTION THREE (20 marks)

a) Environmental causes of mortality (per 100,000 of males population) from 1958 to 1964 due to waterborne diseases in major towns in England and Wales were sampled. Average water hardness due to calcium level was sampled. About 36 towns in northern England were sampled and a sample of the results presented in the table below. Calculate Pearson correlation coefficient and test the appropriate hypothesis and comments about the result. $t_{(0.025,33)}=2.036$ [10 marks]

Mortality (Y)	Water Hardness (X)	YX	\mathbf{X}^2	\mathbf{Y}^2
1668	17	28356	289	2782224
1800	14	25200	196	3240000
1627	20	32540	400	2647129
1378	71	97838	5041	1898884
∑Y=58580	∑X=1101	∑XY=1745214	$\sum X^2 = 56937$	$\sum \mathbf{Y}^2 = 96012380$

b) The same data was collected from 25 towns in southern England as in (a) above. Calculate spearman's

rank correlation and test the appropriate hypothesis and comments about the result. $t_{(0.025,24)}=2.064$ [10 marks]

Mortality	Rank	Hardness	Rank	d	d ²
1466	9	5	24.5		
1486	6.5	5	24.5		
1625	2	13	23		
1581	3	14	22		
1260	18	21	20.5		
1519	5	21	20.5		
1257	20	50	19		
1627	1	53	18		
1309	15	59	17		
1527	4	60	16		
1369	12	68	15		
1392	11	73	14		
1299	17	78	12.5		
1307	16	78	12.5		
1485	8	81	11		
1359	13	84	10		
1456	10	90	9		
1254	21	96	8		
1236	23	101	7		
1247	22	105	6		
1175	24	107	5		
1318	14	122	3.5		
1486	6.5	122	3.5		
1259	19	133	2		
1096	25	138	1		

QUESTION FOUR (20 marks)

a) A simple linear regression model is presented by the model shown below. Define each of its components as much as possible. [4 marks]

 $Y_i = \alpha_i + \beta X_i + e_i; i > 2,$

b) What hypotheses do we test in the simple linear regression? [4 marks]

c) Some of the advantages of using the methods indicated in conducting a survey. Fill in with "Yes" or "No"

	Personal	Group	Postal	Telephone
	Interview	Interview	Survey	Survey
Are sure that correct respondent is interviewed				
Can be sure respondent is part of sampling frame				
Subjects selected independently				
Interviewers trained to deal with problems,				
obtain information for particular questionnaire				
Can make explanations and answer questions				
Can probe for details				
Opportunity to motivate respondents				
Opportunity to edit response				
Opportunity to evaluate responses				
Some control over respondent's task performance				
Opportunity for direct quality control of				
interviewing/data entry process				
Opportunity to reflect on responses				
Data can be entered directly into computer				
Can use visual aids				
Possibility of recording errors by interviewer				
Invasion of privacy				

[12 marks]

QUESTION FIVE (20 marks)

a) Define in a sample survey a sampling frame, respondents, enumerators, secondary and primary data

[5 marks]

b) You are required to interview KABU students and staff on their satisfaction on the use of the available computer facilities using simple random sampling design. Describe where you will get sampling frame for respondents and computers. [5 marks]

c) You have gone to Kericho district and wish to get information on the performance of tea industry by small scale and large scale farmers. Where will you source your information that will assist you apply random sampling method to pick respondents for interview? Describe briefly how you will go about creating a sampling frame where it does not exist and finally organizing a credible sample survey.

[10 marks]

You may use formulae relevant to your case

A $(1-\alpha)100$ Confidence Interval

$$\begin{split} &((\overline{x_{1}} - \overline{x_{2}}) - ts_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \text{ to}((\overline{x_{1}} - \overline{x_{2}}) + ts_{p} \sqrt{\frac{1}{n_{1}} + \frac{2}{n_{2}}} \\ &t_{0} = \frac{(\overline{x_{1}} - \overline{x_{2}})}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}} \\ &S_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} \\ &\rho = 1 - \frac{6\sum d^{2}}{n(n^{2} - 1)} \\ &t_{0} = \rho_{c} \sqrt{\frac{n - 2}{n(n^{2} - 1)}} \\ &t_{0} = \widehat{r_{c}} \sqrt{\frac{n - 2}{1 - \rho^{2}}} \\ &r = \frac{\sum X_{i}Y_{i} - \frac{(\sum X_{i})(\sum Y_{i})}{n}}{(\sqrt{(\sum X^{2} - \frac{(\sum X)^{2}}{n})(\sum Y^{2} - \frac{(\sum Y)^{2}}{n})}} \\ &S_{d} = \left[\frac{\sum_{i=1}^{2} d_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{2} d_{i}\right)^{2}}{n - 1}\right]^{1/2} \\ &t_{0} = \frac{\overline{d}}{s_{d} / \sqrt{n}} \end{split}$$