KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 324

COURSE TITLE: SAMPLING SURVEYS

- STREAM: Y3S2
- DAY: FRIDAY
- TIME: 2.00 4.00 P.M.
- DATE: 13/08/2010

INSTRUCTIONS:

> Answer question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

(a) Define the following terms used in the design and analysis of sample surveys.

- (i) A population
- (ii) A parameter
- (iii) A sample
- (iv) Pilot survey
- (b) Discuss briefly why an individual wishing to obtain information would choose to select a random sample from the population rather than conduct a complete. [4 mks]

[4 mks]

- (c) A simple random sample of size 10 is drawn without replacement from a population of 100. The sample observations are given as 2.4, 3.2, 2.9, 4.6, 1.9, 2.8, 3.1, 1.8, 3.6, 2.8 Compute
 - (i) An unbiased estimate of the mean and its standard error
 - (ii) An unbiased estimate of the total and its standard error
 - (iii) A 98% confidence interval for the mean [10 mks]
- (d) The following table provides a summary of the information obtained from a stratified random sample where SRSWOR from each stratum has been used:

STRATUM	N _i	n_i	\overline{y}_i	S_i^2
1	80	29	80	144
2	160	39	30	64
3	260	32	10	16

- (i) Estimate the population total (T)
- (ii) Calculate an estimate var \hat{T} of the population total (T)
- (iii) Comment on the sort of allocation used in the above data. [12 mks]

QUESTION TWO (20 MARKS)

- (a) Describe briefly the stratified random sampling. [5 mks]
- (b) Derive the expression for optimum allocation which does not involve the cost function [5 mks]

(c) The following table provides a summary of information obtained from a stratified random sampling where SRSWOR from each stratum has been used

Stratum	N _i	σ_i
1	45	10
2	20	19
3	65	5

Using the optimum allocation determine

(i) The stratum sample sizes

(ii) Var (\bar{y}_{st})

[10 mks]

QUESTION THREE (20 MARKS)

- (a) Show that in SRSWOR the sample variance is an unbiased estimator of the population Variance i.e. $E(s^2) = \sigma^2$ [7 mks]
- (b) To estimate the total number of vouchers that are incorrectly filed, an auditor took a simple random sample of n = 100 vouchers from a group of N = 500 and found that 40 were incorrectly filed. Calculate p and find the 95% confidence interval for the total number of vouchers that were incorrectly filed. [7 mks]
- (c) Briefly describe the properties that a good estimator of a parameter should posses.

[4 mks]

QUESTION FOUR (20 MARKS)

A group of 100 rabbits is being used in a nutrition study. A pre-study weight is recorded for each rabbit. The average of these weights is 3.1 kg. After two months the experimenter wants to obtain a rough approximation of the average weight of rabbits. She selects n = 10 rabbits at random and weighs them. The original and current weights are presented in the table below:

Rabbit	Original weight (x_i)	Current Weight (y _i)
1	3.2	4.1
2	3.0	4.0
3	2.9	4.1
4	2.8	3.9
5	2.8	3.7
6	3.1	4.1
7	3.0	4.2
8	3.2	4.1
9	2.9	3.9
10	2.8	3.8

- (i) Estimate the average current weight
- (ii) Obtain a 95% confidence interval for the population mean \overline{Y} using (i).
- (iii) Obtain the ratio estimate for the mean current weight. [20 marks]