COURSE CODE: MATH 324

COURSE TITLE: SAMPLING SURVEYS
STREAM:
Y3S2
DAY:
TIME:
DATE:
13/08/2010

INSTRUCTIONS:

> Answer question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Define the following terms used in the design and analysis of sample surveys.
(i) A population
(ii) A parameter
(iii) A sample
(iv) Pilot survey
[4 mks]
(b) Discuss briefly why an individual wishing to obtain information would choose to select a random sample from the population rather than conduct a complete.
(c) A simple random sample of size 10 is drawn without replacement from a population of 100 . The sample observations are given as $2.4,3.2,2.9,4.6,1.9,2.8,3.1,1.8,3.6,2.8$
Compute
(i) An unbiased estimate of the mean and its standard error
(ii) An unbiased estimate of the total and its standard error
(iii) A 98% confidence interval for the mean
[10 mks]
(d) The following table provides a summary of the information obtained from a stratified random sample where SRSWOR from each stratum has been used:

STRATUM	N_{i}	n_{i}	\bar{y}_{i}	S_{i}^{2}
1	80	29	80	144
2	160	39	30	64
3	260	32	10	16

(i) Estimate the population total (T)
(ii) Calculate an estimate var \hat{T} of the population total (T)
(iii) Comment on the sort of allocation used in the above data.
[12 mks]

QUESTION TWO (20 MARKS)

(a) Describe briefly the stratified random sampling.
[5 mks]
(b) Derive the expression for optimum allocation which does not involve the cost function
[5 mks]
(c) The following table provides a summary of information obtained from a stratified random sampling where SRSWOR from each stratum has been used

Stratum	$\boldsymbol{N}_{\boldsymbol{i}}$	$\boldsymbol{\sigma}_{\boldsymbol{i}}$
1	45	10
2	20	19
3	65	5

Using the optimum allocation determine
(i) The stratum sample sizes
(ii) $\operatorname{Var}\left(\bar{y}_{s t}\right)$
[10 mks]

QUESTION THREE (20 MARKS)

(a) Show that in SRSWOR the sample variance is an unbiased estimator of the population Variance i.e. $E\left(s^{2}\right)=\sigma^{2}$
(b) To estimate the total number of vouchers that are incorrectly filed, an auditor took a simple random sample of $n=100$ vouchers from a group of $\mathrm{N}=500$ and found that 40 were incorrectly filed. Calculate p and find the 95% confidence interval for the total number of vouchers that were incorrectly filed.
(c) Briefly describe the properties that a good estimator of a parameter should posses.
[4 mks]

QUESTION FOUR (20 MARKS)

A group of 100 rabbits is being used in a nutrition study. A pre-study weight is recorded for each rabbit. The average of these weights is 3.1 kg . After two months the experimenter wants to obtain a rough approximation of the average weight of rabbits. She selects $n=10$ rabbits at random and weighs them. The original and current weights are presented in the table below:

Rabbit	Original weight $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	Current Weight $\left(\boldsymbol{y}_{\boldsymbol{i}}\right)$
1	3.2	4.1
2	3.0	4.0
3	2.9	4.1
4	2.8	3.9
5	2.8	3.7
6	3.1	4.1
7	3.0	4.2
8	3.2	4.1
9	2.9	3.9
10	2.8	3.8

(i) Estimate the average current weight
(ii) Obtain a 95% confidence interval for the population mean \bar{Y} using (i).
(iii) Obtain the ratio estimate for the mean current weight. [20 marks]

