

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SCIENCE

COURSE CODE: PHYS 422

COURSE TITLE: SEMICONDUCTOR DEVICES

STREAM: SESSION VIII

DAY: SATURDAY

TIME: 2.00 - 4.00 P.M.

DATE: 28/11/2009

INSTRUCTIONS:

Answer **QUESTION 1** and **ANY OTHER TWO**

QUESTION 1

- (a) Define the following terms:-
 - (i) Recombination process. (1mark)
 - Lifetime of electron-hole-pair. (ii) (1mark)
- (b) Differentiate between extrinsic and intrinsic semiconductors. (2 marks)
- (c) Name the three modes of operation of the bipolar transistor and give the biasing conditions of each. (6 marks)
- (d) Explain the *four* important properties of the FETs. (8 marks)
- (e) Give three reasons why Si and Ge have advantage over other elements in the development of semiconductor devices. (4 marks)
- (f) Why is the ripple factor of a power supply an important specification? (2 marks)

QUESTION 2

- (a) By show of diagrams describe positive and negative clipper circuits.
 (b) A certain P-N junction has a leakage current of 10⁻¹⁴ A at room temperature of 27° C and 10⁻⁹ A at 125° C. The diode is forward biased with a constant-current source of 1 mA at room temperature. If the current is assumed to be constant, calculate the junction barrier voltage at room temperature and at 125°C. (6 marks)

QUESTION 3

(a) Determine the quiescent operating point for the circuit of fig. 2 and the sketch the loadline. (7marks)

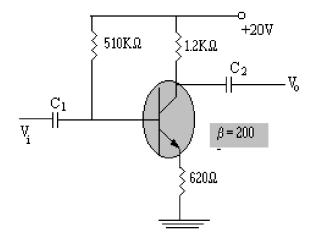
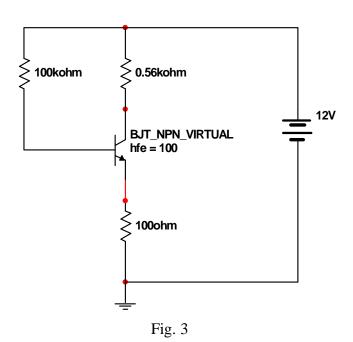


Fig. 2

(b) Show that the stability factor is given by
$$S = \frac{(1+\beta)}{(1-\beta)\frac{\Delta I_B}{\Delta I_C}}$$
 (5 marks)

QUESTION 4

- (a) Differentiate between the *enhancement mode* MOSFET and *depletion mode* MOSFET. (2marks)
- (b) Design a self-bias circuit such as to operate a JFET 2N5952. Use a 22-V supply and bias the device at $I_D = 5 \text{mA}$, $V_{DS} = 15 \text{V}$.

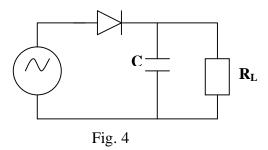

The spec. sheet for the 2N5952 shows

 $I_{GSS} = 200nA$

 $I_{DSS} = 4mA$ to 8mA (use $I_{DSS} = 6mA$)

$$V_{GS(off)} = -1.3V \text{ to } -3.5V \text{ (use } V_P = -2.5V)$$
 (8marks)

(c) Calculate the stability factor of the circuit in fig. 3. (2 marks)



QUESTION 5

(a) Design a common emitter bias circuit that will conform to the following specifications:

Supply voltage =
$$12V_{DC}$$
, $\beta = 400$, $I_{CQ} = 22mA$ (6 marks)

(b) If the input voltage of the power supply shown in fig. 4 is 20 V_{ac} and the load resistance is 1 $K\Omega$. Calculate the size of the smoothing capacitor needed, in order for the load voltage to be 25 V_{DC} .

QUESTION 6

(a) Describe thermal runaway and how it is prevented. (12 marks)