MATH 317 - Statistics Through Applications

INST: i) Answer ALL Questions on this paper

ii) every question should start on a fresh page

QUESTION 1: (15 marks)

The table below shows the final scores for 45 students in MATH 123. Use this data to complete the table below:

68	84	46	82	83	75	61	76	75
73	52	35	63	78	88	67	62	84
61	44	62	74	39	92	94	52	46
66	78	51	68	72	81	71	47	57
96	36	66	60	52	65	62	32	88

(a) Write a SAS programme that can perform the following operations (use PS=50 in the option statement);

- (i) read this data continuously (3 marks)
- (ii) produce the descriptive statistics , normal probability plot stem-leaf plot and a box plot. (3 marks)
- (iii) insert relevant remarks, titles and footnotes where necessary. (3 marks)

(b) Write a SAS programme that can draw a chart for the data above. Use seven classes (6 marks)

QUESTION 2: (20 marks)

(a) Data below shows the yield data in a maize variety trial;

Plot	Variety	yields
1	А	20
2	В	12
3	В	8
4	С	26
5	А	21
6	А	25
7	В	13
8	С	28
9	С	30

Write a SAS programme that can perform the following operations;

(i)	Transform yields by factor of 0.6 and create a new variable							
	'Tyields'	(3 marks)						
(ii)	Sort the data by varieties	(3 marks)						
(iii)	Print the sorted data	(3 marks)						
(iv)	Plot a graph of 'variety Vs yields'	(3 marks)						
(v)	Insert 2 titles in the programme	(3 marks)						

- 1 -

(b) Detect the mistakes and edit the programme;

/ height and gender / OPTIONS PAGE SIZE=50 LINE SIZE=80 NO DATE DATA=height; INPUT GENDER HEIGHT @@; DATA LINES F 56 M 67 F 47 F 34 M 43 F 35; TITLE GENDER VS HEIGHT STUDY; PROC SORT DATA HEIGHT; **BY GENDER** PROC PRINT; BY HEIGHT; VAR HEIGHT: PROC PLOT DATA=HEIGHT; PLOT GENDER vs HEIGHT; TITLE 'A PLOT OF GENDER vs HEIGHT': FOOTNOTE3 'BY PETER MALANGI' RUN;

(10 marks)

QUESTION 3: (20 marks)

(a) Write a SAS programme that will perform the Analysis of Variance (ANOVA) at $\alpha = 0.01$ on the data set below;

A comparative study of the yield potentials for four maize varieties

Var 1	Var 2	Var 3	Var 4
18	23	10	25
16	19	12	29
21	28	8	24
16	22	11	26

(7 marks) (2 marks)

(b) State the hypothesis of the test.

(c) Complete the ANOVA table below using the SAS OUTPUT;

SoV	df	SS	MS	F	p- value
Treatment					
Error					
Total					

(4 marks) (2 marks)

(d) Do you 'reject' or 'fail to reject' the null hypothesis ?

(e) Make a conclusion on the test.(2 marks)(f) Conduct an LSD comparison between the mean yields. What can you conclude from this analysis.(2 marks)

Show appropriate titles and footnotes in the programme.

QUESTION 4: (15 marks)

(a) Using *IF*, *AND*, *THEN* and *ELSE*, write a complete SAS programme, including titles and footnotes, that you could use to grade the students in a class into the following categories. Insert the remarks 'pass' (score>=40) or 'fail' (score<40) in the output;

Score (%)	Grade			
< 40	E			
40 – 49	D			
50 – 59	С			
60 – 74	В			
>= 75	А			

Class scores (MATH 123)

Name	Gender	Score (%)
Mwangi	m	68
Kiplono	f	79
Mutua	m	54
Kainda	m	46
Kamau	m	82
Muthoni	f	60
Wanjiku	f	31
Wacheke	f	58
Njeri	f	62
Maina	m	94
Wainaina	m	23
Muriuki	m	74
Njoki	f	42
Bulemi	m	73

(7 marks)

(b) For the data below, write a programme that will a linear regression analysis (y = a + bx);

Examination scores

Student	А	В	С	D	Е	F	G	Н	Ι	J
February	22	41	46	53	62	65	72	80	91	92
June	27	30	38	35	44	41	50	44	62	68

From the OUTPUT extract the values of a, b and r. Comment on the relationship between the February and June scores. (8 marks)