MATH 317 - Statistics Through Applications

INST: i) Answer $A \amalg$ Questions on this paper
ii) every question should start on a fresh page

QUESIION 1: (15 marks)

The table below shows the final sc ores for 45 students in MATH 123. Use this data to complete the table below:

68	84	46	82	83	75	61	76	75
73	52	35	63	78	88	67	62	84
61	44	62	74	39	92	94	52	46
66	78	51	68	72	81	71	47	57
96	36	66	60	52	65	62	32	88

(a) Write a SAS programme that can perform the following operations (use $P S=50$ in the option statement);
(i) read this data continuously (3 marks)
(ii) produce the descriptive statistics, nomal probability plot stem-leaf plot and a box plot.
(3 marks)
(iii) insert relevant remarks, titles and footnotes where necessary.
(3 marks)
(b) Write a SAS programme that can draw a chart for the data above. Use seven classes
(6 marks)

QUESTION 2: (20 marks)

(a) Data below shows the yield data in a maize variety trial;

Plot	Variety	yields
1	A	20
2	B	12
3	B	8
4	C	26
5	A	21
6	A	25
7	B	13
8	C	28
9	C	30

Write a SAS programme that can perform the following operations;
(i) Transform yields by factor of 0.6 and create a new variable
‘Tyields'
(ii) Sort the data by va rieties
(iii) Print the sorted data
(iv) Plot a graph of 'variety Vs yields'
(v) Insert 2 titles in the programme
(b) Detect the mistakes and edit the programme;
/ height and gender/
OPTIONSPAGE SIZE=50 UNE SIZE=80 NO DATE
DATA =height;
INPUTGENDER HEIG HT@@;
DATA UNES
F 56
M 67
F 47
F 34
M 43
F 35;
TTTE GENDER VS HEIG HTSTUDY;
PROC SORTDATA HEIGHT;
BY GENDER
PROC PRINT;
BY HEIG HT;
VAR HEIGHT;
PROC PLOTDATA=HEIGHT;
PLOTGENDER vs HEIGHT;
TITE ‘A PLOTOF GENDER vs HEIG HT;
FOOTNOTE3 ‘BY PEIER MALANGI'
RUN;
(10 marks)

QUESIION 3: (20 marks)

(a) Write a SAS programme that will perform the Analysis of Variance (ANOVA) at $\alpha=0.01$ on the data set below;

A comparative study of the yield potentials for four maize varieties

Var1	Var2	Var3	Var4
18	23	10	25
16	19	12	29
21	28	8	24
16	22	11	26

(b) State the hypothesis of the test.
(7 marks)
(c) Complete the ANOVA table below using the SAS OUTPUT;

SoV	df	SS	MS	F	p- value
Treatment					
Error					
Total					

[^0](e) Make a conclusion on the test.
(2 marks)
(f) Conduct an LSD comparison between the mean yields. What can you conclude from this a na lysis.

Show appropriate titles and footnotes in the programme.

QUESIION 4: (15 marks)

(a) Using IF, AND, THEN a nd ELSE , write a complete SAS programme, including titles and footnotes, that you could use to grade the students in a class into the following categories. Insert the remarks 'pass' (score>=40) or 'fail' (sc ore <40) in the output;

Score (\%)	Grade
<40	E
$40-49$	D
$50-59$	C
$60-74$	B
$>=75$	A

Class sc ores (MATH 123)

Name	Gender	Score (\%)
Mwangi	m	68
Kiplono	f	79
Mutua	m	54
Ka inda	m	46
Kamau	m	82
Muthoni	f	60
Wanjiku	f	31
Wacheke	f	58
Njeri	f	62
Maina	m	94
Waina ina	m	23
Muriuki	m	74
Njoki	f	42
Bulemi	m	73

(b) For the data below, write a programme that will a linear regression analysis ($y=a+b x$);

Examination scores
Student A B C D
February $22414653 \quad 626572809192$
$\begin{array}{lllllllllll}\text { June } & 27 & 30 & 38 & 35 & 44 & 41 & 50 & 44 & 62 & 68\end{array}$
From the OUTPUTextract the values of a, b and r. Comment on the relationship between the February and J une scores. (8 marks)

[^0]: (4 marks)
 (d) Do you 'reject' or 'fail to reject' the null hypothesis?
 (2 marks)

