

UNIVERSITY OF NAIROBI

SECOND SEMESTER EXAMINATIONS 2007/2008

THIRD YEAR EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

FEE 322: ELECTRICAL CIRCUIT THEORY II B

DATE: 22ND JULY, 2008

TIME: 11.15 A.M. – 01.15 P.M.

INSTRUCTIONS

- 1. Attempt ONE question from EACH of the THREE sections
- 2. All questions carry equal marks
- 3. Smith Charts are provided

SECTION A: TWO-PORT NETWORKS

QUESTION ONE: (20 MARKS)

- (a) (i) Give the defining equations for the transmission (ABCD) parameters.
 - (ii) For two networks connected in cascade, derive the expression for the overall ABCD parameters in terms of the ABCD parameters of the individual networks.
 - (iii) Obtain the ABCD parameters for the circuit of Fig.Q1(a)
 - (iv) Determine the open circuit voltage gain of the circuit

[8 marks]

(b) (i) Explain what is meant by '*image impedance*' as applies to two-port networks.
(ii) Determine the values of the image impedances of the network in Fig.Q1(a).

(iii) Determine the propagation function of the network in Fig.Q1(a)

LEO = 1 In (TAD + JBC) TAD - JBC]

[6 marks]

Page 1 of 6

- (c) (i) Give the defining equations for the *z*-parameters of a two port network.
 - (ii) Obtain the expressions for the z-parameters in terms of the ABCD parameters
 - (iii) Using the result in (ii) obtain the equivalent *T-network* for the network in Fig.Q1(a)

[6 marks]

[8 marks]

QUESTION TWO: (20 MARKS)

- (a) (i) Derive the expressions for the *z*-parameters in terms of the *h*-parameters.
 - (ii) Convert the network of Fig.Q2(a) into the equivalent *T-network*.
 - (iii) Determine the *z*-parameters of the network.
 - (iv) Determine the characteristic impedance of the network. $Z_0 = \sqrt{z_0^2 z_{12}^2}$

Fig. Q2(a)

- (b) (i) With the help of diagrams, show how termination on *image basis* differs from termination on *iterative basis* for a two-port network.
 - (ii) Show that the characteristic impedance of a symmetrical lattice network is given by $\sqrt{Z_A Z_B}$, where Z_A and Z_B are the series and diagonal arm impedances respectively
 - (iii) By converting the network of Fig. Q2(b) into a lattice network determine its characteristic impedance at $\omega = 0.4$ radians.

[8 marks]

Fig. Q2(b)

(c) Using a purely resistive symmetrical lattice network, design a symmetrical π -type attenuator having a characteristic impedance of 100 Ω and an attenuation of 20 nepers.

[4 marks]

SECTION B: ONE-PORT NETWORK SYNTHESIS .

QUESTION THREE: (20 MARKS)

- (a) (i) Give the four properties that must be true for the driving point immitance functions for any non-dissipative network that is physically realizable.
 - (ii) Indicate which of the four are true for even dissipative networks.
 - (iii) State the separation property of reactive networks and explain its significance

[4 marks]

- (b) For the circuit of Fig.Q3(b) determine
 - (i) the driving point impedance of the network as a quotient of polynomials
 - (ii) a sketch of the reactance function $X(j\omega)$
 - (iii) the second Cauer form of the equivalent network, indicating all the component values

[8 marks]

Fig. Q3(b)

- (c) A certain network's driving point admittance function has poles at s = -2 and -6 and zeros at s = 0, -4 and -8. At s = -3, the admittance is 1mho. Determine
 - (i) the quotient expression in s for the admittance function
 - (ii) the second Foster network, indicating all component values
 - (iii) the first Cauer network, indicating all the component values

[8 marks]

QUESTION FOUR: (20 MARKS)

(c)

- (a) (i) Give the factored form of the general driving point impedance expression in s for R-C networks.
 - (ii) Show a general pole-zero plot for the networks in (i), indicating any assumptions.
 - (iii) Give a sketch of a complete first Foster R-C network

[4 marks]

[8 marks]

- (b) For the driving point impedance function $Z_D(s) = \frac{2s^2 + 8s + 6}{3s^2 + 18s + 24}$ determine
 - (i) the first Foster network, indicating all component values
 - (ii) the second Cauer network, indicating all the component values

For the driving point impedance
$$Z_D(s) = \frac{10s^4 + 12s^2 + 1}{2s^3 + 2s}$$
 determine

le

- (i) all the external and internal poles and zeros
- (ii) the frequency pattern (pole-zero plot)
- (iii) the second Foster form of the network, indicating all the component values

[8 marks]

Page 3 of 6

SECTION C: TRANSMISSION LINES

QUESTION FIVE: (20 MARKS)

- (a) (i) Explain the advantage of double stub matching over single stub matching.
 - (ii) Show that the impedance of a short circuit stub of a lossless line is pure reactance.
 - (iii) Determine the range of the shortest lengths of an open circuit stub that result in inductive reactance.

[5 marks]

[15 marks]

(b) The layout for a double-stub tuner is shown in Figure Q4 below. Determine

- (i) the required length ℓ , of the short circuit stub S1
- (ii) the required length \mathcal{L}_{z} of the open circuit stub S2
- (iii) the VSWR on each of the three sections of the main line
- (iv) the percentage of the power incident at the junction of stub S1 that gets transmitted
- (v) the percentage of the power incident at the load that gets reflected

Figure Q4

QUESTION SIX: (20 MARKS)

Zoc Zoc

- (a) Starting from the general expression for Z_{ℓ} , the transmission line impedance at a point a distance ℓ from the load Z_{L} , show that $Z_{sc}Z_{oc} = Z_{0}^{2}$ and $Z_{sc}/Z_{oc} = \tanh^{2}\gamma\ell$
- (b) A 50m long transmission line operating at 1MHz has open-circuit and short-circuit impedance of -j39.4Ω and j142.8Ω respectively. Calculate
 - (i) the characteristic impedance of the line
 - (ii) the propagation coefficient of the line
 - (iii) the line input impedance when terminated with a load of $18.75 j112.5\Omega$

[7 marks]

- (c) Given a high frequency line with $Z_0=150\Omega$, terminated in $Z_L=70+j0\Omega$. The line is 18.68 λ long. Neglecting losses, use the Smith Chart on an admittance basis to determine
 - (i) the reactance in ohms which, if connected across the sending end of the line, will make the input impedance of the combination a pure resistance
 - (ii) the input impedance of the line under the conditions in (i).

[3 marks]

(d) Two transmission lines are connected in parallel at their sending ends. One line is 0.625λ long and has $Z_0=400\Omega$ with a termination $Z_L=800\Omega$. The other is 0.375λ long and has $Z_0=400\Omega$ and is terminated in an impedance of $400+j400\Omega$. Using **ONLY** the Smith Chart on an admittance basis, determine the input impedance of the parallel combination of the two lines.

Tor the Nuchronik For T Network
$$R_{1} = Ro\left(\frac{N-1}{N+1}\right)$$
 [6 marks
 $R_{1} = Ro\left(\frac{N^{2}-1}{R}\right)$ $R_{2} = Ro\left(\frac{N-1}{N+1}\right)$ $R_{4} = Ro\left(\frac{N-1}{N+1}\right)$ [6 marks
 $R_{2} = Ro\left(\frac{N+1}{N-1}\right)$ $R_{2} = Ro\left(\frac{N-1}{N+1}\right)$ $R_{3} = Ro\left(\frac{N+1}{N-1}\right)$ $R_{4} = Ro\left(\frac{N+1}{N+1}\right)$ $R_{5} = Ro\left(\frac{N+1}{N-1}\right)$ $R_$