KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 222

COURSE TITLE: TELECOMMUNICATIONS AND COMPUTERS

STREAM:	Y2S2
DAY:	MONDAY
TIME:	2.00 – 4.00 P.M.
DATE:	02/08/2010

INSTRUCTIONS:

• Answer ALL the questions in PART ONE and any TWO questions in PART TWO.

PLEASE TURNOVER

PART ONE

QUESTION ONE (30 MARKS)

- A transmission channel has a signal to noise ratio of 3090. The transmission channel can transmit signals with frequencies between 4560 Hz and 9900 Hz. Use the Shannon capacity formula to determine the theoretical highest data rate for this channel. (3 marks)
- b. An electromagnetic wave has a frequency of 1 GHz. Calculate its
 - i. Period (2 marks)
 - ii. Wavelength (2 marks)
- c. An analog signal is converted to a digital signal using PCM. The analog signal is first sampled at uniform intervals to give the following pulses.

Table A

Time	0	0.00005	0.00010	0.00015	0.00020	0.00025	0.00030	0.00035	0.00040	0.00045	
(seconds)											
Sample	1.4	4.2	5.1	8.8	11.9	15.3	18.7	22.5	24.1	26.6	
amplitude											
(volts)											

The pulses are then quantized with a quantizer using the following quantization levels.

Table B

Quantization	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
levels																
(volts)																

The quantized pulses are then binary encoded by a binary encoder.

	i.	What	is the sampling interval?	(1 mark)				
	ii.	ii. Calculate the sampling rate						
	iii.	Deter	mine the quantized pulse level, for each of the	e sampled				
		pulses	s in table A.	(5 marks)				
	iv.	Calcu	late the bit rate of the resultant digital signal	(4 marks)				
d.	What is di	gital tra	ansmission?	(1 mark)				
e.	What is lin	ne codi	ng?	(1 mark)				
f.	For each of the following line codes; Manchester code and the							
	determine	is they	are;					
		i.	Self synchronizing	(2 mark)				
		ii.	Has a residual DC component	(2 mark)				
g.	For the fo	llowing	binary data					
		01100	01110101					
	Draw	the						
		i.	Manchester code	(3 marks)				
		ii.	Unipolar code	(2 marks)				

PART TWO

QUESTION TWO (20 MARKS)

a.	Describe							
	i. Frequency	equency shift keying						
	ii. Frequency	modulation	(3 marks)					
b.	What is half	duplex transmission?	(1 mark)					
c.	What is full c	luplex transmission?	(1 mark)					
d.	A transmissio	on channel has a bandwidth of 5500 Hz.	You are required to					
	provide full d	luplex transmission between two devices	s, with a guard band					
	of 500 Hz be	of 500 Hz between the two directions. Amplitude shift keying is to be						
	used as the m	sed as the modulation scheme. Calculate						
	i.	The bandwidth in Hz available for dat	a transmission in					
		each direction	(2 marks)					
	ii.	The frequency of each carrier signal th	nat is used for					
		modulation in each direction	(3 marks)					
	iii.	(2 mark)						
	iv.	The bit rate in each direction	(2 marks)					
	v.	v. The bit rate in each direction if 16 Quadrature Amplitude						
	Modu	Modulation is used instead (2 marks						

QUESTION THREE (20 MARKS)

a.	What does the term burst error mean?	(1 mark)					
b.	With regard to simple parity check what is meant by;						
	i. Odd parity	(2 marks)					
	ii. Even parity	(2 marks)					
c.	How many errors can be detected using simple parity check	x?(1 mark)					
d.	The following block of 16 bits is to be sent along with a checksum of						
	8 bits for error detection purposes.						
	0110010111110101						
	Use the checksum generator to generate the checksum bits,	(3 marks)					
e.	A receiver receives the following pattern of bits.						
	101010010011111100011101						
The bi	The bits consist of 16 data bits and eight checksum bits. Use the checksum						
checke	checker to determine if any errors occurred during transmission. (5 marks)						

f.	What is error control?	(3 marks)
g.	What is forward error correction?	(3 marks)

QUESTION FOUR (20 MARKS)

a. Time division multiplexing is used to multiplex ten lines each transmitting at the rate of 1600 bits per second. The multiplexed signal is then transmitted on a link whereby each time slot in the transmitted frames is 4 bits long. Calculate

	i.	The bit interval on each of the four lines	(2 marks)
	ii.	The bit interval on the link carrying the TDM signal	(2 marks)
	iii.	The duration of a time slot	(2 marks)
	iv.	Duration of a frame	(3 marks)
	v.	The bit rate of the multiplexed signal	(2 marks)
b.	5 signa	als are frequency division multiplexed. Each signal has a ba	ndwidth of
	4200 H	Iz. A guard band of 200 Hz is used to separate the FDM ban	nds. Calculate
	the min	nimum bandwidth required for the FDM signal.	(4 marks)
c.	What i	s channelization?	(2 marks)
d.	Descri	be frequency division multiple access (FDMA)	(3 marks)