KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATIONS

COURSE CODE: TLCM 211

COURSE TITLE: TELECOMMUNICATIONS FUNDAMENTALS

STREAM: Y2S1

DAY: FRIDAY

TIME: 9.00 – 12.00 P.M.

DATE: 06/08/2010

INSTRUCTIONS:

Answer ONE question from PART ONE and any THREE questions from PART TWO

PLEASE TURN OVER

PART ONE

QUESTION ONE (20 MARKS)

a.	A tra	ansmission line has the following characteristics.		
	Resi	stance per meter = 10^{-5} Ohms/meter		
	Indu	$ctance = 10^{-8}$ Henrys/meter		
	Cond	ductance = 10^{-7} Siemens/meter		
	The transmission line has been constructed according to Heaviside's condition for			
	distortionless transmission. Calculate;			
	i.	The characteristic impedance of the line	(5 marks)	
	ii.	The attenuation constant	(4 marks)	
b.	A multistage switch is implemented with the following characteristics			
	It has 30 inputs and 30 outputs			
	It has three stages			
	The first stage has 5 crossbar switches			
	The second stage has 3 crossbar switches			
	The last stage has 5 crossbar switches			
	i.	How many inputs does each of the switches in the first st	age have? (2 marks)	
	ii.	How many outputs does each of the switches in the first s	stage have?(2 marks)	
	iii.	How many outputs does each of the switches in the second	nd stage have?(2 marks)	

- iv. How many cross points does the multistage switch have? (4 marks)
- c. In multistage switches what does blocking mean? (1 mark)

PART TWO

QUESTION TWO (10 MARKS)

a. Briefly describe the ways in which the following types of radio waves are propagated.

(2 marks)

- i. Free space waves
- ii. Ionospheric waves
- iii. Tropospheric waves
- iv. Ground waves
- b. With regard to ionospheric waves what is meant by the skip distance? (1 mark)
- c. A dipole antenna is 0.3 meters long. It is excited by an electrical signal with a frequency of 2000 GHz. Draw the polar diagram of the field strength produced by the antenna. (4 marks)

d. A modulating signal with frequency components between 300 Hz and 3300 Hz is used to amplitude modulate a carrier with a frequency of 100 MHz. Determine the frequency content of the resultant modulated signal. (3 marks)

QUESTION THREE (10 MARKS)

- a. With regard to a satellite what is meant by
 - i. Geosynchronous earth orbit (1 mark)
 - ii. Footprint (1 mark)
- b. Describe two factors that determine the diameter of an ground station dish (2 marks)
- c. What three parameters are required to calculate the azimuth and elevation angles required for pointing a ground station to a geosynchronous satellite? (3 marks)
- d. Incorporating satellites into terrestrial networks is often hindered by three characteristics possessed by satellite communications. Describe these three characteristics. (3 marks)

QUESTION FOUR (10 MARKS)

- a. The operation of lasers is made possible by the phenomenon called stimulated emission. Describe this phenomenon. (3 marks)
 b. What is
- i.Step index fiber(1 mark)ii.Graded index fiber(1 mark)c.Give two advantages of using wave division multiplex(2 marks)
- d. Give three advantages of using fiber optic cable over coaxial cables (3 marks)

QUESTION FIVE (10 MARKS)

- a. An analog signal has frequency components between 1200 Hz and 6700 Hz. It is converted to a digital signal using PCM. It is first sampled at the Nyquist rate. It is then quantized by a quantizer that uses 64 quantization levels and is finally binary encoded by a binary encoder.
- i. What are the sampling rate and the sampling interval? (2 marks)
- ii. What is the bit rate of the resultant digital signal? (2 marks)
- b. The following three connections are time division multiplexed.

Connection 1 bit rate 500 bits per second Connection 2 bit rate 1000 bits per second Connection 3 bit rate 1500 bits per second The multiplexed signal is then transmitted on a link whereby each time slot in the transmitted frames is 6 bits long. Calculate

i.	The number of time slots in a frame	(2 marks)
ii.	Bit rate of the multiplexed signal	(2 marks)
iii.	The frame rate	(2 marks)