**KABARAK** 



**UNIVERSITY** 

# **EXAMINATIONS**

# 2008/2009 ACADEMIC YEAR

# FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

- COURSE CODE: MATH 416
- COURSE TITLE: TIME SERIES
- STREAM: Y4S1
- DAY: WEDNESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 18/03/2009

### **INSTRUCTIONS:**

Attempt **QUESTION ONE** and **ANY OTHER TWO** questions.

## PLEASE TURN OVER

| Question One | ( <b>30mks</b> ) |
|--------------|------------------|
|--------------|------------------|

|                                                                         | Year                                 | Quarte              | r 1                | Quarter                 | 2 Qu                   | arter 3                | Quar                | ter 4                  |        |  |
|-------------------------------------------------------------------------|--------------------------------------|---------------------|--------------------|-------------------------|------------------------|------------------------|---------------------|------------------------|--------|--|
|                                                                         | 1997                                 | 50                  |                    | 35                      |                        | 10                     | 28                  | 3                      |        |  |
|                                                                         | 1998                                 | 54                  |                    | 38                      |                        | 12                     | 34                  | 4                      |        |  |
|                                                                         | 1999                                 | 58                  |                    | 41                      |                        | 15                     | 41                  | 1                      |        |  |
|                                                                         | 2000                                 | 62                  |                    | 44                      |                        | 18                     | 46                  | 5                      |        |  |
|                                                                         | (i) Obtain a 4 moving average trend. |                     |                    |                         |                        |                        |                     |                        |        |  |
| (ii) Using an appropriate model, obtain seasonal and random variations. |                                      |                     |                    |                         |                        |                        |                     |                        |        |  |
| (iii) Hence forecast for 2001 quarter 1, quarter 2.                     |                                      |                     |                    |                         |                        |                        |                     |                        | (2mks) |  |
| (b)                                                                     | Calculate the autobelow.             | ocovaria<br>1<br>50 | nce and<br>2<br>40 | hence th<br>3 4<br>32 2 | e autocor<br>5<br>4 16 | relation fu<br>6<br>13 | unction (<br>7<br>9 | (ACF) of the<br>8<br>6 | e data |  |
|                                                                         | Hence plot the                       | e correlo           | gram               |                         |                        |                        |                     |                        | (6mks) |  |
| (c) ]                                                                   | Determine wheth                      | er the fol          | llowing            | ARMA                    | models ar              | e stationa             | ry                  |                        |        |  |
|                                                                         | (i) <b>=</b>                         | - 0.24              |                    | F                       |                        |                        |                     |                        |        |  |
|                                                                         | (ii) <b>=</b> - <b>0</b> .           | .9 –                | - 0.2              | +                       |                        |                        |                     |                        |        |  |
|                                                                         | (iii) <b>= 0.8</b>                   | _ +0                | .48 _              | +                       |                        |                        |                     |                        | (4mks) |  |
| (d)                                                                     | Determine the inv                    | vertibilit          | y and A            | CF of the               | e followin             | g MA (2)               | ) process           | 8                      |        |  |
|                                                                         | (i) <b>=</b> –                       | 0.36                | - 0                | .36                     |                        |                        |                     |                        |        |  |
|                                                                         | (ii) <b>= 0.6</b>                    | - (                 | 0.5                | +                       |                        |                        |                     |                        | (4mks) |  |

(a) The data below shows the sales made by a company from 1997 to 2000.

(e) Obtain the spectral density of an AR(1) process given by

 $= \emptyset +$  (5mks)

## Question Two (20mks)

| (a) | (i) Stat       | (4mks)          |                   |                  |     |        |  |  |  |
|-----|----------------|-----------------|-------------------|------------------|-----|--------|--|--|--|
|     | (ii) He        | (2mks)          |                   |                  |     |        |  |  |  |
| (b) | Given A        | ARMA (1, 1      | ) model obtain    |                  |     |        |  |  |  |
|     | (i) t          | (4mks)          |                   |                  |     |        |  |  |  |
|     | (ii) E         | (2mks)          |                   |                  |     |        |  |  |  |
| (c) | Calcula        | te the ACF      | for <b>= 0.5</b>  | + 0.3            | +   |        |  |  |  |
|     | Hence J        | plot it.        |                   |                  |     | (8mks) |  |  |  |
| Qu  | estion T       | hree (20m       | ks)               |                  |     |        |  |  |  |
| (a) | Explain<br>(i) |                 |                   |                  |     |        |  |  |  |
|     | (ii            | i) weekly st    | weekly stationary |                  |     |        |  |  |  |
|     | (ii            | (iii) causality |                   |                  |     |        |  |  |  |
|     | (i             | (8mks)          |                   |                  |     |        |  |  |  |
| (b) | Compu          | te the spectr   | al density of the | e filtered proce | ess |        |  |  |  |
|     |                | <b>]</b> - =    | + +               | 1                |     | (6mks) |  |  |  |
| (c) | Given t        | he series       |                   |                  |     |        |  |  |  |
|     | Year           | Q1              | Q2                | Q3               | Q4  |        |  |  |  |
|     | 1              | 59              | 25                | 75               | 12  |        |  |  |  |
|     | 2              | 63              | 28                | 79               | 17  |        |  |  |  |
|     | 3              | 70              | 32                | 84               | 22  |        |  |  |  |
|     | 4              | 77              | 36                | 89               | 27  |        |  |  |  |
|     | (i)            | plot the time   | e series          |                  |     |        |  |  |  |
|     |                |                 |                   |                  |     |        |  |  |  |

(iii) forecast for year 5

(6mks)

### **Question Four** (20mks)

- (a) Briefly explain the factors that make a time series non-stationary. (8mks)
- (b) The spectral density of a real valued time series  $\{ \}$  is defined on  $[0, \pi]$  by

() =  $\begin{cases} 100 & \text{if } \pi_{6} - < < 6 + 0.01 \\ 0 & \text{otherwise} \end{cases}$ 

And on [-, 0] by () = (-)

(i)Evaluate the ACF of at lag 0 and 1(6mks)(ii)What is the variance of = - - 12(6mks)

### Question Five (20mks)

- (a) Determine the discrete fourier transform of the following series
  - (i) = 0.5 + (ii) = 0.3 + 0.2 + (8mks)
- (b) Find the ACF and PACF of the series= 0.5+ 0.2+(8mks)is the series stationary.(4mks)