KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 416

- COURSE TITLE: TIME SERIES ANALYSIS
- STREAM: Y4S1
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 07/12/2009

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Distinguish between;(i) Deterministic and stochastic time series(ii) Discrete and continuous Time series	(2 marks) (2 marks)					
(b) Clearly explain the components of a time series	(8 marks)					
(c) In a study of demand (d_t) for the past 12 years, has indicated the following observations.						
$d_t = 100;$ $t = 1, 2, 3, 4, 5$ = 20; $t = 6$						
= 20; $t = 0= 100; = 7,8,9,10,11,12compute 5 years moving Average$	(4 marks)					
(d) Show that the process $x_t = a + bt + e_t$ where $e_t \sim N(0, \sigma^2)$ is statio weak sense.	(5 marks)					

(e) Determine whether the following processes are invertible $x_t = e_t + 0.7e_{t-1} - 0.2e_{t-2}$ (3 marks)

(f) Discuss the method of fitting an exponential curve to a time series. (6 marks)

QUESTION TWO (20 MARKS)

- (a) Explain four methods to study or measure trend. (8 marks)
- (b) The table below shows the figures of production in thousand tonnes of sugar in a factory.

Year	1993	1995	1996	1997	1998	1999	2002
Production of Sugar	167	188	194	185	191	198	200

(i) Fit a straight line by method of least squares and tabulate the trend values.

(6 marks)

Eliminate the trend hence state the components of trend that arise. (2 marks) (ii)

- (iii) Calculate the monthly increase in production of sugar. (2 marks)
- Estimate the 2000 production. (2 marks) (iv)

QUESTION THREE (20 MARKS)

(a) State and explain the methods of measuring seasonal variations. (6 marks)

(b) Calculate the seasonal variation for the following data by ratio-trend method.

(14 marks)

Year	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
2000	30	40	36	34
2001	34	52	50	44
2002 2003	40 54	58 76	54 68	48 62
2004	80	92	86	82

QUESTION FOUR (20 MARKS)

(a) Briefly explain the effects on components of x_t when moving average filter is used.

(6 marks)

(c) Using the differencing method show that the non-stationarity 2^{nd} order polyninial

 $x_t = a + bt + ct^2 + e_t e_t \sim N(0, \sigma^2)$ can be transformed to stationarity one.

(4 marks)

(d) Find the Autocorrelation function of the function

$$x_t = \frac{1}{4}x_{t-1} + \frac{3}{64}x_{t-2} + e_t$$
 (10 marks)

QUESTION FIVE (20 MARKS)

(a) Briefly explain the following terms as used in Time series (10 marks)

- (i) Auto correlation
- (ii) Auto regressive
- (iii) Spectral Analysis
- (b) AR(1) process $x_t = \alpha x_{t-1} + z_t$ where z_t is purely random process with mean zero and variance σ^2 and α is constant with necessary conditions, derive the variance

and the auto covariance of x_t

(7 marks)