

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 416

COURSE TITLE: TIME SERIES ANALYSIS AND FORECASTING

STREAM: Y4S1

DAY: WEDNESDAY

TIME: 9.00 - 11.00 A.M.

DATE: 11/08/2010

INSTRUCTIONS:

- Answer question ONE and any other TWO questions
- Begin each question on a separate page
- Show your workings clearly

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

- a) What do you understand by the following
 - i) Stationary time series (2 marks)
 - ii) Autocorrelation (2 marks)
 - iii) Forecasting (2 marks)
- b) Show that the ACF of the AR(2) process is given by

$$\rho_1 = \frac{\alpha_1}{1 + \alpha_2}$$
 and $\rho_2 = \frac{{\alpha_1}^2 + {\alpha_2} - {\alpha_2}^2}{1 - \alpha_2}$ (6 marks)

- c) What are the requirements of good forecasting system (4 marks)
- d) For each of the following models, classify it as an ARMA(p,q) process, express it in the backward shift operator form and determine whether it is causal and/or invertible

i)
$$X_t = 0.3X_{t-1} + Z_t$$
 (4 marks)

ii)
$$Xt = Z_t - 1.3Z_{t-1} + 0.4Z_{t-2}$$
 (4 marks)

e) Show that the property of correlation is given by $|\rho| \le 1$ (6 marks)

QUESTION TWO (20 MARKS)

a) Derive the autocovariance and autocorrelation functions of MA(2) process given by

$$Xt = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \qquad \text{Where } Z_t \text{ is White Noise } (0, \sigma^2)$$
 (10 marks)

b) The model $Xt = Z_t + 0.7Z_{t-1}$ represents an invertible MA (1) process with $\theta = 0.7$. For an MA (1) calculate the autocorrelation and partial autocorrelation functions. (10 marks)

QUESTION THREE (20 MARKS)

Consider the AR (2) process given by $X_t = X_{t-1} - 1/2X_{t-2} + Z_t$

i) Is this process stationary? (8 marks)

ii) What is its ACF? (12 marks)

QUESTION FOUR (20 MARKS)

a)	What of	do you understand by the spectral density function	(3 marks)
b)	Find the power spectral density functions of		
	i)	Purely Random process	(5 marks)
	ii)	First-Order Moving Average	(6 marks)
	iii)	First-order AR process	(6 marks)

QUESTION FIVE (20 MARKS)

Describe clearly the main components of Time Series (20 marks)