KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

- COURSE CODE: MATH 222
- **COURSE TITLE: VECTOR ANALYSIS**
- STREAM: Y2S2
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 24/03/2009

INSTRUCTIONS:

- (i) Attempt **QUESTION ONE** and **ANY OTHER TWO** questions.
- (ii) Show all your working and be neat

PLEASE TURN OVER

Question One (30 Marks)

a) (i) Define the terms scalar, vector and unit vector. (3 marks) (ii) Find the unit vector in the direction of the vector $\vec{-2}$ where $\vec{}$ = 2[^] + 2[^] - and $\vec{}$ = 3 + [^] - 5. (3 marks) b) If $\vec{} = \underline{\hat{}}$, find $\nabla \cdot \vec{}$. (4 Mark) c) If the three sides of a triangle are of length $\vec{}$, $\vec{}$ and $\vec{}$ and $\vec{}$ and if the angle opposite the side of length \vec{i} is , show that $\vec{i} = \vec{i} + \vec{i} - 2 \vec{i} \vec{cos}$. (5 marks) d) If and are two nonzero, non-parallel vectors and any vector in the plane of and , then show that $\vec{}$ can be expressed as a linear combination of $\vec{}$ and $\vec{}$ i.e. $\vec{A} = \sigma \vec{A} + \alpha \vec{B}$ where σ and α are uniquely determined scalars. (6 marks) e) If = 3 , = -2 then evaluate $\nabla (\nabla u \cdot \nabla)$. (6 Marks) f) If $i = (3 y -)^{+} (- sin)^{+}$ **sin**, find (3 marks)

Question Two (20 Marks)

a) (i) Find the normal and binormal vectors for the curve

(ii) Determine the curvature for the curve in (i) above.

- () = , () = $3 \sin$, () = $3 \cos$. (9 Marks)
- b) Evaluate $\iint \vec{\cdot} \cdot \vec{\cdot}$ where $\vec{\cdot} = 4 \quad \hat{-} \quad \hat{-} + and is the surface of the cube bounded$ $by <math>= 0 \quad = 1 \quad = 0 \quad = 1 \quad (6 \text{ Marks})$
- c) State Gauss Divergence theorem in word and give its mathematical equivalence.

(2 Marks)

(3 marks)

Question Three (20 Marks)

- a) Prove that (3 + 2 + 4)⁺ + (2 + 5 + 4)⁺ + (4 + 4 8) is both solenoidal and irrotational. (6 Marks)
- b) Evaluate \mathbf{x} at the point (1,1,0) if $\vec{\mathbf{x}} = \mathbf{x} + \mathbf{x} \mathbf{x}$ and
 - $\vec{}$ = $\hat{}$ $\hat{}$ + . (4 Marks)

c) Derive the scale factors for a cylindrical coordinate system; hence prove that this coordinate system is orthogonal. (10 Marks)

<u>Question Four</u> (20 Marks)

- a) Prove that $\nabla \times \phi = \nabla \phi \times \phi \nabla \times \dot{A}$. (6 Marks)
- b) Show that the limit of the sum of two vector functions is the sum of their limits, i.e. if

 $\lim_{t \to \infty} \mathbf{i}(\mathbf{y}) = \mathbf{i} \text{ and } \lim_{t \to \infty} \mathbf{i}(\mathbf{y}) = \mathbf{i}$ then $\lim_{t \to \infty} \mathbf{i}(\mathbf{y}) + \mathbf{i}(\mathbf{y}) = \mathbf{i} + \mathbf{i}$ (6 Marks) c) If $\mathbf{z} = \mathbf{i} + \mathbf{i}$ and $\mathbf{z} = \mathbf{2} - \mathbf{y} - \mathbf{j}$ find: (8 Marks) (i) $\nabla(\mathbf{i} + \mathbf{j})$ (ii) $\nabla(\mathbf{i} - \mathbf{j})$ (ii) $\nabla(\mathbf{i} - \mathbf{j})$.

<u>Ouestion Five</u> (20 Marks)

a) Use Stoke's theorem to evaluate ∫ (+) when is the square on the -plane with vertices (1,0), (-1,0), (0,1), (0, -1). (7 Marks)
b) A particle moves along the curve = 2 , = -4 , 3 - 5 where the time is. Find the components of its velocity and acceleration at time = 1 in the direction ^ - 3^ + 2 . (3 Marks)
c) (a) Show that ³ = (2 +)^ + ^ + 3 is a conservative field. (3 Marks)
(b) Find the work done in moving an object from (1, -2, 1) to (3, 1, 4). (4 Marks)