UNIVERSITY EXAMINATIONS
 2010/2011 ACADEMIC YEAR
 FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222
COURSE TITLE: VECTORS ANALYSIS
STREAM: SESSION V
DAY: FRIDAY
TIME:
9.00-11.00 A.M.

DATE:
15/04/2011

INSTRUCTIONS:

Answer question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION ONE (30MKS) COMPULSORY

(a) If $\mathbf{r}=\mathrm{t}^{2} \mathrm{i}-\mathrm{tj}+(2 \mathrm{t}+1) \mathrm{k}$. Find at $\mathrm{t}=0$ the value of
(i) $|\mathrm{d} \mathbf{r} / \mathrm{dt}|$ (3mks)
(ii) $\left|\mathrm{d}^{2} \mathbf{r} / \mathrm{dt}^{2}\right|$ (2mks)
(b) If $\mathbf{r}=5 \mathrm{t}^{2} \mathrm{i}+\mathrm{tj}^{-}-\mathrm{t}^{3} \mathrm{k}$ and $\mathbf{s}=\sin \mathrm{tj}-\cos \mathrm{tj}$ find the value of
(i) $\mathrm{d} / \mathrm{dt}($ r.s $)$
(ii) $\mathrm{d} / \mathrm{dt}(\mathbf{r} \times \mathbf{s})$
(iii) $\mathrm{d} / \mathrm{dt}(\mathbf{r} . \mathbf{r})$
(c) If $F=x^{2} j+y^{2} j+Z^{2} k$. Find

$$
\begin{aligned}
& \text { (i) } \nabla . F \\
& \text { (ii) } \nabla \times F
\end{aligned}
$$

(3mks)
(d) Determine the total work done in moving a particle in a force field given by $\mathrm{F}=3 \mathrm{xyi}-5 \mathrm{tj}+10 \mathrm{xk}$ along the curve $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=2 \mathrm{t}^{2}, \mathrm{t}=\mathrm{t}^{3}$ from $\mathrm{t}=1$ to $\mathrm{t}=2$
(4mks)
(e) Show that

$$
\mathrm{d} / \mathrm{dt}(\mathrm{U}+\mathrm{V})=\mathrm{du} / \mathrm{dt}+\mathrm{dv} / \mathrm{dt} \text { for any two vectors } \mathrm{U} \text { and } \mathrm{V}(2 \mathrm{mks})
$$

(f) Given that $\mathrm{r}=\mathrm{a} \cos \mathrm{ti}+\mathrm{a} \sin \mathrm{tj}+\mathrm{btk}$, Show that $(\mathrm{r})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \quad(3 \mathrm{mks})$

QUESTION TWO (20MKS)

(a) Given that $\mathrm{r}=\mathrm{a} \operatorname{costi}+\mathrm{a} \operatorname{sintj}+\mathrm{at} \tan \mathrm{k}$ Find
(i) $\left|\mathrm{dr} / \mathrm{dt} \times \mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2}\right|$
(5mks)
(ii) $\mathrm{dr} / \mathrm{dt} \cdot \mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{3} \times \mathrm{d}^{3} \mathrm{r} / \mathrm{dt}^{3}$
(5 mks)
(b) Given that $r=a \operatorname{costi}+a \sin t j+b t k$ show that $\left(r^{\prime} \times r^{\prime \prime}\right)^{2}=a^{2}\left(a^{2}+b^{2}\right)$ (5mks)
(c) Determine the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ for which the vector $\mathrm{r}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \mathrm{I}+(\mathrm{bx}-3 \mathrm{y}-$ $\mathrm{z}) \mathrm{j}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z})$ is irrotational
(d) Determine the constant a so that the vector $V=(x+3 y) i+(y-2 z) j+(x+a z) k$ is solenoidal.
(2mks)

QUESTION THREE (20MKS)

(a) The acceleration at any instant t of a moving particle is given by $\mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2}=12 \cos 2 \mathrm{ti}-8 \sin 2 \mathrm{tj}+16 \mathrm{tk}$.

Find the velocity V and displacement r at any time t if at $\mathrm{t}=\mathrm{o}$, it is known that $\mathrm{v}=\mathrm{o}$ and $\mathrm{r}=\mathrm{o}$.
(b) Determine r at any instant t if $d^{2} r / d t^{2} 6 t i-24 t^{2} \mathrm{j}+4$ sintk .Given that $\mathrm{r}=2 \mathrm{i}+\mathrm{j}$ and $\mathrm{dv} / \mathrm{dt}=-\mathrm{i}-3 \mathrm{k}$ at $\mathrm{t}=\mathrm{o}$
(c) If $A=\left(3 x^{2}+6 y\right) i-14 y t j+20 x t^{2} k$. Evaluate \int. dr from $(0,0,0)$ to $(1,1,1)$ along the following path C :
(i) $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{t}=\mathrm{t}^{3}$
(ii) The straight lines $(0,0,0)$ to $(1,0,0)$ then to $(1,1,0)$ and then to $(1,1,1) \quad$ (5 mks)

QUESTION FOUR (20MKS)

(a) Let $\mathrm{A}=2 \mathrm{yzi}-\mathrm{x}^{2} \mathrm{yj}+\mathrm{xt}^{2} \mathrm{k}, \mathrm{B}=\mathrm{x}^{2} \mathrm{i}+\mathrm{ytj}-\mathrm{xyk}$ and $\emptyset=2 \mathrm{x}^{2} \mathrm{yt}^{2}$ find
(i) $(A . \nabla) \emptyset$
(ii) $(A \times \nabla) \emptyset$
(3mks)
(iii) $A \times \nabla \emptyset$
(b) A particle moves so that its position vector is given by $\mathrm{r}=$ costi $+\operatorname{sinbtj}$ where b is a constant. Show that
(i)The velocity of the particle is perpendicular to r
(ii)The acceleration a is directed towards the origin and has magnitude proportional to the distance from the origin.

QUESTION FIVE (20MKS)

(a) Determine the circulation of the vector function $\mathrm{V}=2 \mathrm{yi}+\mathrm{xj}$ around the curve shown below
(i) Direct integration
(ii) Use stokes Theorem

(b) (i) State the divergence theorem.
(ii) In the divergence theorem, let the vector function $\mathrm{U}=\varnothing \mathrm{i}$, where \varnothing is a scalar function. Derive the resulting integral theorem.

