KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

- **COURSE TITLE: VECTORS ANALYSIS**
- STREAM: SESSION V
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 15/04/2011

INSTRUCTIONS:

Answer question **ONE** and any other **TWO** questions

PLEASE TURN OVER

QUESTION ONE (30MKS) COMPULSORY

(a) If $\mathbf{r} = t^2 \mathbf{i} \cdot t\mathbf{j} + (2t+1)\mathbf{k}$. Find at $t = 0$ the value of	
(i) $ d\mathbf{r}/dt $ (3mks)
(ii) $ d^2\mathbf{r}/dt^2 $ (2mks)
(b) If $\mathbf{r} = 5t^2\mathbf{i} + t\mathbf{j} + t\mathbf{j} + t\mathbf{k}$ and $\mathbf{s} = \sin t\mathbf{j} - \cos t\mathbf{j}$ find the value of	
(i) $d/dt(\mathbf{r.s})$ (3mks)
(ii) $d/dt(\mathbf{r} \times \mathbf{s})$ (4)	4mks)
(iii) $d/dt(\mathbf{r.r})$ (3mks)
(c) If $F = x^2 j + y^2 j + Z^2 k$. Find	
(i)∇.F (3mks)
(ii) $\nabla \times F$ (3mks)

(d) Determine the total work done in moving a particle in a force field given by F = 3xyi - 5tj + 10xk along the curve $x = t^2 + 1$, $y = 2t^2$, $t = t^3$ from t = 1 to t = 2 (4mks)

(e) Show that

 $d/dt(U + V) = du/dt + dv/dt \text{ for any two vectors } U \text{ and } V \quad (2mks)$ (f) Given that $r = a \cos ti + a \sin tj + btk$, Show that $(r)^2 = a^2 + b^2 \quad (3mks)$

QUESTION TWO (20MKS)

(a) Given that $r = a \cosh i + a \sinh j + at \tan k$ Find	
(i) $ dr/dt \times d^2r/dt^2 $	(5mks)
(ii) $dr/dt \cdot d^2r/dt^3 \times d^3r/dt^3$	(5mks)
(b) Given that $r = a \cosh i + a \sin i + b + b + b + b + b + b + b + b + b +$	$(\dot{r} \times \dot{r})^2 = a^2(a^2 + b^2)$
	(5mks)
(c) Determine the values of a,b,c,d for which the vec	tor $r=(x+2y+az)I + (bx-3y-az)I$
z)j + (4x + cy + 2z) is irrotational	(3mks)
(d) Determine the constant a so that the vector $V = (x + y)^2$	(x + 3y)i + (y - 2z)j + (x + az)k
is solenoidal.	(2mks)

QUESTION THREE (20MKS)

(a) The acceleration at any instant t of a moving particle is given by $d^2r/dt^2 = 12 \cos 2ti - 8 \sin 2tj + 16tk.$

Find the velocity V and displacement r at any time t if at t = 0, it is known that v = 0 and r = 0. (6mks)

- (b) Determine r at any instant t if d^2r/dt^2 6ti $24t^2j$ + 4sintk .Given that r = 2i + j and dv/dt = -i-3k at t = o
 - (4mks)
- (c) If $A = (3x^2 + 6y)i 14ytj + 20xt^2k$. Evaluate $\int dr$ from (0,0,0) to (1,1,1) along the following path C:
 - (i) $x = t, y = t^2, t = t^3$ (5mks)
 - (ii) The straight lines (0,0,0) to (1,0,0) then to (1,1,0) and then to (1,1,1) (5mks)

QUESTION FOUR (20MKS)

(a) Let
$$A = 2yzi - x^2yj + xt^2k$$
, $B = x^2i + ytj - xyk$ and $\emptyset = 2x^2yt^2$ find
(i) $(A.\nabla)\emptyset$ (3mks)
(ii) $(A \times \nabla)\emptyset$ (4mks)
(iii) $A \times \nabla \emptyset$ (4mks)
(b) A partiala mayor so that its position vector is given by $r = aati + ainbti$

(b) A particle moves so that its position vector is given by r = costi + sinbtj where b is a constant. Show that

(i)The velocity of the particle is perpendicular to r (4mks)

(ii)The acceleration a is directed towards the origin and has magnitude proportional to the distance from the origin. (5mks)

QUESTION FIVE (20MKS)

(a) Determine the circulation of the vector function V=2yi+xj around the curve shown below

(i) Direct integration	(5mks)
(ii) Use stokes Theorem	(5mks)

(b) (i) State the divergence theorem. (2mks)
(ii) In the divergence theorem, let the vector function U=Øi, where Ø is a scalar function. Derive the resulting integral theorem. (8mks)