KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

COURSE TITLE: VECTOR ANALYSIS

- STREAM: SESSION IV
- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 12/08/2010

INSTRUCTIONS:

> Answer Question **ONE** and any other **TWO** questions

PLEASE TURNOVER

QUESTION ONE: 30 MARKS

a)	Find the unit vector perpendicular to the plane of the vector	
	$\vec{A} = 3i - 2j + 4k$ and $\vec{B} = i + j - 2k$.	(4 marks)
b)	Find the directional derivative of $\phi = xyz$ at (1,2,3) in the direction from (1,2,3)	to (1,-1,-3). (6 marks)
c)	A particle moves along the space curve $r(t) = (t^3 + 2t)i - 3e^{-2t}j + 2\sin 5tk$. find the	
	(i) Velocity(ii) Acceleration at any time	(4 marks)
d)	Find the volume of a parallelepiped with the sides $\vec{a} = 3i - j, \vec{b} = j = 2k, \vec{c} = i + 5j + k$.	
e)	Verify that $\operatorname{Divcurl} \phi = 0$	(5 marks) (6 marks)
f)	Find the curvature of the twisted cube $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at a point (0,0,0)	
		(5 marks)

QUESTION TWO: 20 MARKS

a) If
$$\vec{A} = xi - x^2 j + (x - 1)k$$
 and $\vec{B} = 2x^2 i + 6xk$ evaluate (i) $\int_{0}^{2} \vec{A} \cdot \vec{B} dx$ (ii) $\int_{0}^{2} \vec{A} \times \vec{B} dx$ (8 marks)

b) Find the value of λ if $\vec{A} = \cos \lambda x i + \sin \lambda x j$ satisfies the differential equation

$$\frac{d^2\vec{A}}{dx^2} = -9\vec{A}$$
 (6 marks)

c) Find the angle between the planes x + y + z = 1 and x - 2y + 3z = 1 (6 marks)

QUESTION THREE: 20 MARKS

a) Given the space curve $x = 3\cos t$, $y = 2\sin t$ find the curvature of the ellipse at the points corresponding to t = 0 and $t = \frac{\pi}{2}$. (7 marks) b) If $\vec{R} = x^2yi - 2y^2zj + xy^2z^2k$, find $\left|\frac{\partial^2 \vec{R}}{\partial x^2} \times \frac{\partial^2 \vec{R}}{\partial x^2}\right|$ at the point (2,1,-2)

b) If
$$K = x y_l - 2y z_l + xy z_k$$
, find $\left| \frac{\partial x^2}{\partial y^2} \times \frac{\partial y^2}{\partial y^2} \right|$ at the point (2,1,-2)

c) Show that the vectors
$$\vec{a} = i + 4j - 7k$$
, $\vec{b} = 2i - j + 4k$ and $\vec{c} = -9j + 18k$ are coplanar.

(5 marks)

QUESTION FOUR: 20 MARKS

a) Find the volume of the parallelepiped of sides $\vec{a} = i - j + 2k$, $\vec{b} = 2i + j + 4k$ and $\vec{c} = -i - 2j - 9$. (4 marks)

b) If
$$\vec{a} = x^2 i - yj + xzk$$
, $\vec{b} = yi - xj + xyzk$ and $\vec{c} = i - yj + x^3zk$ evaluate at (1,-1,2)
 $\partial^2 = z - z - \partial \vec{E} = z - z$

(i)
$$\frac{\partial}{\partial x \partial y} (\vec{a} \times \vec{b})$$
 (ii) $\frac{\partial F}{\partial x}$ given that $\vec{F} = \vec{a} \cdot (\vec{b} \times \vec{c})$ (10 marks)

c) Evaluate div
$$\vec{F} = x^2 yzi + 3xyz^3 j + (x^2 - z^2)k$$
 (6 marks)

QUESTION FIVE: 20 MARKS

- a) Verify green's theorem in the plane for $\int_{c} 4x^2 y dy + 2y dy$ where c is the closed curve is a triangle with vertices (0,0), (1,2) and (0,2). (7 marks)
- b) Evaluate $\iint_{s} \vec{F}.nds$ where $\vec{F} = x^{2}yi + 2xzj + yz^{3}k$ and s is the surface of the rectangular solid determined by $0 \le x \le 1.0 \le y \le 2, 0 \le z \le 3$. (7 marks)
- c) Find the equation of the tangent plane and the normal line to the surface $x^2 + y^2 + 2z^2 = 23$ at (1,2,3). (6 marks)