UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

COURSE TITLE: VECTOR ANALYSIS
STREAM: SESSION IV
DAY:
SATURDAY
TIME:
9.00-11.00 A.M.

DATE:
10/04/2010

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions.

QUESTION ONE: 30 MARKS

a). Let $\quad \tilde{A}=\left(2 x^{2} y-x^{4}\right) \hat{\imath}+\left(e^{x y}-y \sin x\right) \hat{\jmath}+\left(x^{2} \cos y\right) \hat{k}$ show that $\quad \frac{\partial^{2} \tilde{A}}{\partial x \partial y}=\frac{\partial^{2} \tilde{A}}{\partial y \partial x}$
[4 marks]
b). Prove that the diagonals of a parallelogram bisect each other
c). Find the volume of the Tetrahedron with sides \tilde{a}, \tilde{b}, and \tilde{c} given by $\tilde{a}=\tilde{\imath}+2 \tilde{k}$,

$$
\begin{equation*}
\tilde{b}=4 \tilde{\imath}+6 \tilde{\jmath}+2 \tilde{k} \quad \text { and } \quad \tilde{c}=3 \tilde{\imath}+3 \tilde{\jmath}-6 \tilde{k} \tag{6marks}
\end{equation*}
$$

d). Evaluate the iterated integral

$$
\int_{1}^{3} \int_{\frac{1}{2} x}^{4 x} 2 x y d y d x
$$

e). State Stoke's Theory and use it to evaluate $\oint_{c} \widetilde{A} . d r$ where $\tilde{A}=(\mathrm{y}-\mathrm{z}+2) \mathrm{i}+(\mathrm{yz}+4) \mathrm{j}-\mathrm{xzk}$ and C is the boundary of the region $\mathrm{y}=0, \mathrm{x}=0, \mathrm{z}=0 \mathrm{y}=2, \mathrm{x}=2, \mathrm{z}=2$ above the xy plane. [7 marks]

QUESTION TWO: 20 MARKS

Sketch the space curve with parametric equations
$x=3 \cos t, y=3 \sin t$ and $z=4 t$. Find;
(i) The unit tangent T
(ii) The principal normal N
(iii) Curvature K
(iv) Radius of curvature P
(v) The binormial B
(vi) Torsion T and
(vii) Radius of torsion S
[20 marks]

QUESTION THREE: 20 MARKS

a). State the first form of the divergence theorem of Gauss.
b). Verify the divergence theorem in (a), above where

$$
\begin{aligned}
& \tilde{A}=2 x \hat{\imath}+z y \hat{\jmath}+x \hat{k} \text { and } \mathrm{S} \text { is the surface of the tetrahedron bounded by the planes } \\
& x=0, y=0, z=0 \quad \text { and } x+y+z=1
\end{aligned}
$$

c). Find the angle between the vectors

$$
\begin{equation*}
\tilde{A}=3 \hat{\imath}+2 \hat{\jmath}-6 \hat{k} \quad \text { and } \bar{B}=4 \hat{\imath}-3 \hat{\jmath}+\hat{k} \tag{4marks}
\end{equation*}
$$

QUESTION FOUR: 20 MARKS

a). Prove that the vectors $\bar{A}=2 \hat{\imath}+\hat{\jmath}-\hat{k}, \quad \tilde{B}=\hat{\imath}-\hat{\jmath}+\hat{k}$ and $\tilde{C}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$ can form the sides of a right angled triangle. Find the area of this triangle
[5 marks]
b). Find the equation of the plane through $P(2,-1,1), Q(3,2,-1), R(-1,3,1)$ in the form

$$
\begin{equation*}
a x+b y t c z+d=0 \tag{6marks}
\end{equation*}
$$

c). Show that the vector field $\tilde{A}=\left(6 x y+z^{3}\right) \hat{\imath}+\left(3 x^{2}-z\right) \hat{\jmath}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational and find its scalar potential.

QUESTION FIVE: 20 MARKS

a). Evaluate $\iint_{S} \tilde{A} \cdot n d s$ where $\tilde{A}=2 y \hat{\imath}-z \hat{\jmath}+x^{2} \hat{k}$ and S is the surface of the parabolic cylinder $y^{2}=8 x$ in the first octant bounded by the planes $y=4$ and $z=6 \quad$ [10 marks] b). A particle moves along a curve whose parametric equations are $x=e^{-t}, y=2 \cos 3 t, z=2 \sin 3 t$, where t is the time.
(a) Determine its velocity and acceleration at any time
(b) Find the magnitude of the velocity and acceleration at $\mathrm{t}=0$

QUESTION SIX: 20 MARKS

a). Find the directional derivative of the function $Q=x^{3} y+3 y^{2} z-4 x z^{2}$ at $(3,1,-1)$ in the direction of $i+4 \hat{\jmath}-3 \hat{k}$
b). Evaluate $\nabla^{2}\left(\operatorname{div}\left(\frac{\tilde{r}}{r^{2}}\right)\right)$ where $\tilde{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ [8 marks]
c). Show that if \tilde{A} is a vector-valued function and \emptyset is a scalar function then $\operatorname{div}(\varnothing \tilde{A})=\operatorname{grad} \emptyset \cdot \tilde{A}+\emptyset \operatorname{div} \tilde{A}$

