UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222
COURSE TITLE: REAL ANALYSIS I
STREAM: SESSION III
DAY:
TUESDAY
TIME:
2.00 - 4.00 P.M.

DATE:
01/12/2009

INSTRUCTIONS:

Answer question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) The position vector of a moving particle is
$R(t)=5 \sin 4 t \hat{\imath}+5 \cos 4 t \hat{\jmath}+10 t \hat{k}$. Find the magnitude of the velocity and acceleration at time $t=0$
(4 marks)
(b) The acceleration of a particle at any time $t \geq 0$ is given by $a=e^{t} \hat{\imath}+e^{2 t} \hat{\jmath}+\hat{k}$. If at $t=0$, the displacement is $r=o$ and the velocity is $v=\hat{\imath}+\hat{\jmath}$, find r and v at any time t.
(6 marks)
(c) If $\emptyset=x^{2}+y^{2}+z^{2}$ and $A=x y^{2} \hat{\imath}+y z^{2} \hat{\jmath}+x^{2} z \hat{k}$, Find
(i) $\quad \operatorname{Grad} \varnothing$
(2 marks)
(ii) $\operatorname{Div} A$
(2 marks)
(iii) $\operatorname{Curl} A$
(4 marks)
(d) Find the equation of the tangent plane to the surface

$$
F\left(x_{1} y_{1} z\right)=x^{3}+3 x y z+2 y^{3}-z^{3}-5 \text { at the point }(1,1,1)
$$

(4 marks)
(e) Evaluate the line integral

$$
\begin{aligned}
& \int_{c}\left(x^{2}-2 y^{3}\right) d y+(x+5 y) d y \quad \text { a long a straight line from } \\
& (1,1) \text { to }(2,2)
\end{aligned}
$$

(f) Show that $F=(2 x y+3) \hat{\imath}+\left(x^{2}-4 z\right) \hat{\jmath}-4 y \hat{k}$ is a conservative force field.
(4 marks)

QUESTION TWO (20 MARKS)

(a) Evaluation $\iint_{S} x d s$ where S is that portion of the surface $y=2 x^{2}-z$ in the first octant bounded by $x=0, x=2, y=4$ and $y=8$
(b) Find the unit vector normal to the surface $x^{2}+y^{2}+z^{2}=a^{2}$
(c) Given $f(x, y, z)=x^{2} y \hat{\imath}+z \hat{\jmath}-(x+y-z) \hat{k}$ Find
(i)
$\nabla \cdot F$
(2 marks)
(ii) $\nabla \times F$
(3 marks)
(iii) $\nabla(\nabla \cdot F)$

QUESTION THREE (20 MARKS)

(a) Given that $\underline{R}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $r=|\underline{R}|$, prove that $\nabla r^{n}=n r^{n-2} R \quad$ ($\mathbf{1 0}$ marks)
(b) Show that the vector field $\underline{F}=2 x y e^{z} \hat{\imath}+\left(x^{2} e^{z}+y\right) \hat{\jmath}+\left(x^{2} y e^{z}-z\right) \hat{k}$ is a gradient field and find its scalar potential function.
(10 marks)

QUESTION FOUR (20 MARKS)

(a) Verify Green's theorem in the plane for $\oint_{c}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$, where C is a square with vertices at $(0,0),(2,0),(2,2)$ and $(0,2)$
(10 marks)
(b) Show that the area bounded by a simple closed curve is given by $\frac{1}{2} \oint_{c} x d y-y d x$
(3 marks)
(c) If $\underline{A}=\left(3 x^{2}-6 y z\right) \hat{\imath}+(2 y+3 x z) \hat{\jmath}+\left(1-4 x y z^{2}\right) \hat{k}$, evaluate $\int_{c} A \cdot d r$
(i) From $(0,0,0)$ to $(1,1,1)$ a long the path $x=t, y=t^{2}, z=t^{3}$ (4 marks)
(ii) Straight line from $(0,1,1)$ to $(1,1,1)$
(3 marks)

QUESTION FIVE (20 MARKS)

(a) Evaluate $\iint_{S} A \cdot n d s$ where $\underline{A}=x y \hat{\imath}-x^{2} \hat{\jmath}+(x+z) \hat{k} \quad \mathrm{~S}$ is that portion of the plane $2 x+2 y+z=6$ included in the first octant and n is a unit normal to S . ($\mathbf{1 4}$ marks)
(b) Use divergence theorem to evaluate $\iint_{s} A \cdot n d s$ where $\underline{A}=(2 x-z) \hat{\imath}+x^{2} y \hat{\jmath}-z^{2} \hat{k}$ Taken over the region bounded by $x=0, x=1, y=0, y=1, z=0, z=1$
(6 marks)

