UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

COURSE TITLE: VECTOR ANALYSIS
STREAM: Y2S2
DAY: THURSDAY
TIME:
2.00-4.00 P.M.

DATE:
17/03/2011
INSTRUCTIONS:
1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE (30 MARKS)

a) A particle moves so that its position vector is given by $\underline{r}=\cos \omega t \hat{i}+\sin \omega \hat{j}$ where ω is a constant
(5 marks)
i) Show that the velocity \underline{v} of the particle is perpendicular to \underline{r}
ii) The acceleration \underline{a} is directed towards the origin and has magnitude proportional to the distance from the origin.
b) Given that $\vec{A}=2 y z \hat{i}-x^{2} y \hat{j}+x z^{2} \hat{k}$ and $\phi=2 x^{2} y z^{3}$. Find $(\vec{A} \times \vec{\nabla}) \phi$
(5 marks)
c) Determine the constant a so that the vector $\vec{V}=(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+a z) \hat{k}$ is a solenoid (2 marks)
d) The acceleration of a particle at any time $t \geq 0$ is given by $a=12 \cos 2 t \hat{i}-8 \sin 2 t \hat{j}+16 t \hat{k}$. If at $t=0$, the displacement is $r=0$ and the velocity is $v=t+\hat{f}$, find r and v a any time t. (6 marks)
e) Given that $A=\left(3 x^{2}++6 y\right) \hat{i}-14 y z \hat{j}+20 x z^{2} \hat{k}$ evaluate $\int_{C} \vec{A} \bullet d \underset{\sim}{r}$ from $(0,0,0)$ to $(1,1,1)$ along the path $x=t, y=t^{2} z=t^{3}$
(4 marks)
f) Find the volume of the region common to the intersecting cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$
g) Verify green's theorem in the plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve bounded by $y=x$ and $y=x^{2}$
h) Express curl \vec{A} in orthogonal coordinates.

QUESTION TWO (20 MARKS)

(a) Given that A and B are differentiable functions of a scalar u show that ($\mathbf{5}$ marks)

$$
\frac{d}{d u} A \bullet B=A \bullet \frac{d B}{d u}+B \bullet \frac{d A}{d u}
$$

(b) Find the unit tangent vector to any point on the curve $x=t^{2}+1, y=4 t-3$ and $z=2 t^{2}-6 t$ hence find the unit tangent at the point where $\mathrm{t}=2$
(5 marks)
(c) A space curve is given by the equations $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$ find
(10 marks)
i) the curvature κ
ii) The torsion τ.

QUESTION THREE (20 MARKS)

a) Show that $\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=-\vec{\nabla}^{2} \vec{A}+\vec{\nabla}(\vec{\nabla} \bullet \vec{A})$
(7 marks)
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
(5 marks)
c) Given a vector $\vec{V}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z)$ find ($\mathbf{8}$ marks)
i) Find the values of a, b, c so that the vector is irrotational
ii) Express the vector as a gradient of a scalar function

QUESTION FOUR (20 MARKS)

a) Given that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$
i) Show that \vec{F} is a conservative force field.
ii) Find the scalar potential
iii) Find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$
(b) Evaluate $\iint_{S}(\stackrel{r}{\nabla} \times \stackrel{r}{F}) \bullet \hat{n} d S$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the x-y plane given that $F=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$
(11 marks)

QUESTION FIVE (20 MARKS)

a) Use divergence theorem to evaluate $\iint_{s}^{A} \cdot n d s$ where $\underline{A}=(2 x-z) \hat{\imath}+x^{2} y \hat{j}-z^{2} \hat{k}$ taken over the region bounded by $x=0, \quad x=1, \quad y=0, \quad y=1, \quad z=0, \quad z=\mathbf{1}$
(8 marks)
b) Verify Stokes theorem for $\vec{A}(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
(6 marks)
c) Find the square of the element of arc length in cylindrical coordinates and determine the corresponding scale factors.
(6 marks)

