KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

COURSE TITLE: VECTOR ANALYSIS

- STREAM: Y2S2
- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 17/03/2011

INSTRUCTIONS:

1. Question **ONE** is compulsory.

2. Attempt question ONE and any other TWO

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- a) A particle moves so that its position vector is given by $\underline{r} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$ where ω is a constant (5 marks)
 - i) Show that the velocity \underline{v} of the particle is perpendicular to \underline{r}
 - ii) The acceleration \underline{a} is directed towards the origin and has magnitude proportional to the distance from the origin.
- b) Given that $\vec{A} = 2yz\hat{i} x^2y\hat{j} + xz^2\hat{k}$ and $\phi = 2x^2yz^3$. Find $(\vec{A} \times \vec{\nabla})\phi$ (5 marks)
- c) Determine the constant *a* so that the vector $\vec{V} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$ is a solenoid (2 marks)
- d) The acceleration of a particle at any time $t \ge 0$ is given by $a = 12\cos 2t\hat{i} 8\sin 2t\hat{j} + 16t\hat{k}$. If at t = 0, the displacement is r = o and the velocity is v = t + f, find r and v a any time t. (6 marks)
- e) Given that $A = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$ evaluate $\int_{C} \vec{A} \cdot dr$ from (0,0,0) to (1,1,1) along the path x = t, $y = t^2$ $z = t^3$ (4 marks)
- f) Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ (3 marks)
- g) Verify green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$ where C is the closed curve bounded by y = x and $y = x^2$ (3 marks)
- h) Express curl \vec{A} in orthogonal coordinates. (3 marks)

QUESTION TWO (20 MARKS)

- (a) Given that A and B are differentiable functions of a scalar u show that (5 marks) $\frac{d}{du}A \bullet B = A \bullet \frac{dB}{du} + B \bullet \frac{dA}{du}$
- (b) Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t 3 and $z = 2t^2 6t$ hence find the unit tangent at the point where t = 2 (5 marks)

(c) A space curve is given by the equations x = t, $y = t^2$, $z = \frac{2}{3}t^3$ find (10 marks)

- i) the curvature κ
- ii) The torsion τ .

QUESTION THREE (20 MARKS)

- a) Show that $\vec{\nabla} \times \left(\vec{\nabla} \times \vec{A} \right) = -\vec{\nabla}^2 \vec{A} + \vec{\nabla} \left(\vec{\nabla} \bullet \vec{A} \right)$
- b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2,-1,2) (5 marks)

(7 marks)

- c) Given a vector $\vec{V} = (x + 2y + az)\hat{i} + (bx 3y z)\hat{j} + (4x + cy + 2z)$ find (8 marks)
 - i) Find the values of *a*, *b*, *c* so that the vector is irrotational
 - ii) Express the vector as a gradient of a scalar function

QUESTION FOUR (20 MARKS)

a) Given that
$$\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$$
 (9 marks)

- i) Show that \vec{F} is a conservative force field.
- ii) Find the scalar potential
- iii) Find the work done in moving an object in this field from (1,-2,1) to (3,1,4)
- (b) Evaluate $\iint_{S} (\nabla \times F) \bullet \hat{n} dS$ where S is the surface of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ above the x-y plane given that $F = y\hat{i} + (x 2xz)\hat{j} xy\hat{k}$ (11 marks)

QUESTION FIVE (20 MARKS)

- a) Use divergence theorem to evaluate $\iint_{s}^{A} \cdot nds$ where $\underline{A} = (2x z)\hat{i} + x^{2}y\hat{j} z^{2}\hat{k}$ taken over the region bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 (8 marks)
- b) Verify Stokes theorem for $\vec{A}(2x-y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. (6 marks)
- c) Find the square of the element of arc length in cylindrical coordinates and determine the corresponding scale factors. (6 marks)