UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

COURSE TITLE: VECTOR ANALYSIS
STREAM: SESSION III
DAY:
TUESDAY
TIME:
9.00 - 11.00 A.M

DATE:
30/11/2010

INSTRUCTIONS:

PLEASE TURN OVER

QUESTION ONE (30 MARKS) COMPULSORY

(a) i) Determine the value of a so that

$$
\begin{equation*}
\mathrm{A}=\mathbf{i}+\mathrm{a} \mathbf{j}+\mathbf{k} \text { and } \mathbf{B}=4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k} \text { are perpendicular. } \tag{2mks}
\end{equation*}
$$

ii) Given that $\mathbf{A}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{C}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$. Find ($\mathrm{A} \times \mathrm{B}$) xC and $\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$ hence show that $(\mathrm{A} \times \mathrm{B}) \mathrm{xC} \neq \mathrm{A} \times(\mathrm{B} \times \mathrm{C})$
(b) i) If A and B are differentiable functions of a scalar u, show that

$$
\frac{d}{d u}(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \cdot \frac{d B}{d u}+\frac{d A}{d u} \cdot \mathbf{B}
$$

ii) Find the velocity and acceleration of a particle which moves along the curve $\mathrm{x}=2 \sin 3 \mathrm{t}, \mathrm{y}=2 \cos 3 \mathrm{t}, \mathrm{z}=8 \mathrm{t}$ at any time $\mathrm{t}>0$, hence determine the magnitude of the velocity and acceleration.
(c) If $\varnothing(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $\nabla \emptyset$ at the point $(1,-2,-1)$
(d) Define curl $\mathrm{A}=\nabla \times a$, hence find curl A at the point $(1,-1,1)$ given that

$$
A=x z^{3} \mathbf{i}-2 x^{2} y z \mathbf{j}+2 y z^{4} \mathbf{k}
$$

(e) If $\mathrm{A}=5 \mathrm{t}^{2} \mathbf{i}+\mathrm{t} \mathbf{j}-\mathrm{t}^{3} \mathbf{k}$ and $\mathbf{B}=\sin \mathbf{i}-\operatorname{cost} \mathbf{j}$, find:

$$
\begin{align*}
& \text { i) } \frac{d}{d t}(\mathbf{A} \cdot \mathbf{B}) \tag{2mks}\\
& \text { ii) } \frac{d}{d t}(\mathbf{A} \times \mathbf{B})
\end{align*}
$$

f) (Find the total work done in moving a particle in a force field given by
$\mathrm{F}=3 \mathrm{xyi}-5 \mathrm{z} \mathbf{j}+10 \mathrm{xk}$ along with curve $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=2 \mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$
from $t=1$ to $t=2$
(4mks)

QUESTION TWO (20 MARKS)

a) If $\mathbf{A}=x^{2} y i-2 x z \mathbf{j}+2 y z \mathbf{k}$ find curl curl A.
(4mks)
b) Let $\mathbf{A}=\mathbf{t i}-3 \mathbf{j}+2 \mathrm{t} \mathbf{k}, \mathbf{B}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}, \mathrm{C}=3 \mathbf{i}+\mathrm{t} \mathbf{j}-\mathbf{k}$

Evaluate i) $\int_{1}^{2} A \cdot(B \times C) d t$

$$
\begin{equation*}
\text { ii) } \int_{1}^{2} A \times(B \times C) d t \tag{5mks}
\end{equation*}
$$

c) Evaluate $\iint_{s} F \cdot n d s$ where $\mathrm{F}=4 \mathrm{xz} \mathbf{i}-\mathrm{y}^{2} \mathbf{j}+\mathrm{yz} \mathbf{k}$ and s is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$ (6 mks)

QUESTION THREE (20 MKS)

a) Verify stokes theorem for $A=(2 x-y) \mathbf{i}-y z^{2} \mathbf{j}-y^{2} z \mathbf{k}$ where s is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
b) If $A=x^{2} z \mathbf{i}+y z^{2} \mathbf{j}-3 x y \mathbf{k}$ and $B=y^{2} \mathbf{i}-y z \mathbf{j}+2 x \mathbf{k}$, find (A. ∇) B (4mks)
c) The acceleration of a particle at any time $t \geq 0$ is given by $\mathrm{a}=\frac{d v}{d t}=12 \cos 2 \mathrm{t} \mathbf{i}-8 \sin 2 \mathrm{t} \mathbf{j}+16 \mathbf{t k}$, if the velocity v and displacement r are zero $\mathrm{at} \mathrm{t}=\mathrm{o}$, find v and r at any time.

QUESTION FOUR (20 MKS)

a) Find the directional derivative of $\emptyset=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction

$$
2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}
$$

b) Prove $\quad \nabla \cdot(\mathrm{A}+\mathrm{B})=\nabla . \mathrm{A}+\nabla . \mathrm{B}$
c) Verify Greens theorem in the plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, Where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

QUESTION FIVE (20 MKS)

a) Show that $\nabla \times\left(\nabla^{2} u\right)=\nabla^{2}(\nabla \times u)$
b) Evaluate:
i) $\operatorname{Grad}(\operatorname{div} F)$
ii) $\operatorname{Div}($ Curl F) for the vector field $F=y z \mathbf{j}+z x \mathbf{k}$
c) Use Greens Theorem to evaluate $\oint_{c}\left(x^{2}+2 y\right) d x+\left(x+3 y^{2}\right) d y$
d) Verify the divergence theorem for $A=4 x i-2 y^{2} j+z^{2} k$ taken over the region bounded by $x^{2}+y^{2}=4, z=0, z=8$

