

UNIVERSITY

EXAMINATIONS
2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 222
COURSE TITLE: VECTOR ANALYSIS
STREAM: SESSION VI
DAY:
MONDAY
TIME:
2.00-4.00 P.M.

DATE:
06/04/2009

INSTRUCTIONS:

- Attempt QUESTION ONE and ANY OTHER TWO questions.

PLEASE TURN OVER

Question One (30 Marks)

(a) If $\rightarrow \quad \wedge+(3-2)^{\wedge}-(3+2), \quad$ find $\frac{\delta^{\vec{~}}}{\delta \delta} \quad \quad$ (3 marks)
(b) For what values of P are the vectors $\stackrel{\wedge}{ }={ }^{\wedge}-2^{\wedge}+$ and $^{\wedge}=2^{\wedge}+{ }^{\wedge}-4$ perpendicular? (3 marks)
(c) Evaluate $2^{\wedge}-4 \times\left(\times 2^{\wedge}\right)$
(d) Find the unit tangent vector for a curve whose parametric equations are $=,=2 \cos 3$,

$$
\begin{equation*}
=2 \sin 3 \quad \text { at } \quad=0 \tag{5Marks}
\end{equation*}
$$

(e) A particle moves along a curve whose parametric equations are $=$, $=\cos ,=$. Determine the velocity and acceleration at time $t=0$
(f) Evaluate

$$
\begin{equation*}
\operatorname{div} 2 \wedge-\quad \wedge+3 \tag{3marks}
\end{equation*}
$$

(g) If $\overrightarrow{ }=\left(\begin{array}{ll}5 & -6\end{array}\right)^{\wedge}+\left(\begin{array}{ll}2 & -4\end{array}\right)$, evaluate $\int \quad .{ }^{\wedge}$ along the curve C in the $\mathrm{xy}-$ plane, $y=x^{3}$ from point $(1,1)$ to $(2,8)$
(h) Show that the vector field $=(2+)^{\wedge}+{ }^{\wedge}+2$ is conservative.

Question Two (20 Marks)

a) If $=+{ }^{\wedge}+\quad \stackrel{ }{ }=\stackrel{\wedge}{ }=3$ and
b) If $\rightarrow 2 \wedge \wedge+3 \quad$, Compute $\vec{\nabla} \cdot \rightarrow \cdot \vec{\nabla} \times \rightarrow \quad$ at the point $(1,1,1) \quad$ (5 Marks)
c) Let $\overrightarrow{ }={ }^{\wedge}+{ }^{\wedge}+\quad$ and $|\vec{\imath}|=$, then deduce the form taken by $\vec{\nabla}$
d) Prove that

$$
\begin{equation*}
\vec{\nabla} \cdot \overrightarrow{ }=3 \tag{3marks}
\end{equation*}
$$

Question Three (20 Marks)

a) Show that the vector field $={ }^{\wedge}+{ }^{\wedge}+\quad$ is a gradient field. Hence or otherwise find the corresponding scalar potential.
b) Find the unit normal vector to $\phi=\quad=1$ at $(1,1,1)$
c) Calculate div $2 \wedge-\quad \wedge+3$

Question Four (20 Marks)

a) Evaluate $\int_{(,)}^{(,)}(+) \quad+(y-) \quad$ along the path $=$.
b) If $\overrightarrow{=} \quad+\mathfrak{2}+{ }^{\wedge}+(+2)$, evaluate $\int \rightarrow \quad \rightarrow$ along the curve

$$
\begin{equation*}
+\quad=1, \quad=1 \text { from the point }(0,1,1) \text { to }(1,0,1) \tag{9Marks}
\end{equation*}
$$

c) Evaluate $\int \quad$ where C is the segment of the line $=2$ in the \quad plane from

$$
\begin{equation*}
(-1,-2,0) \text { to }(1,2,0 \tag{5Marks}
\end{equation*}
$$

Question Five (20 Marks)

a) Use Green's theorem to evaluate $\oint\binom{3}{+4}+\left(\begin{array}{ll}2 & -3\end{array}\right) \quad$ where C is a circle of radius 2 with centre $(0,0)$
b) Evaluate $\iint \quad$ ds where $=2^{\wedge}+\quad+\quad$ and S is the surface bounded by

$$
\begin{equation*}
=\quad,=\quad=2=0 \quad \text { a\#d } 1=3 \tag{6Marks}
\end{equation*}
$$

c) Evaluate $\iint \cdot$ where $={ }^{\wedge}+2^{\wedge}-4$ and S is the surface of the plane $2+\quad=6$ in the - plane and $=4$

