KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 222

COURSE TITLE: VECTOR ANALYSIS

STREAM: SESSION VI

DAY: MONDAY

TIME: 2.00 – 4.00 P.M.

DATE: 06/04/2009

INSTRUCTIONS:

• Attempt **QUESTION ONE** and **ANY OTHER TWO** questions.

PLEASE TURN OVER

<u>Ouestion One</u> (30 Marks)

(a) (b)	If $\vec{} = \hat{} + (3 - 2)\hat{} - (3 + 2)$, find $\frac{\delta}{\delta} \frac{\delta}{\delta}$ For what values of P are the vectors $\vec{} = \hat{} - 2\hat{} + \hat{}$ and $\vec{} = 2\hat{} + \hat{}$	(3 marks) ^ – 4 perpendicular?
		(3 marks)
(c)	Evaluate $2^{-4} \times (\times 2^{-3})$	(2 marks)
(d)	Find the unit tangent vector for a curve whose parametric equations are	= , = 2 cos 3 ,
	= 2 sin 3 at = 0	(5 Marks)
(e)	A particle moves along a curve whose parametric equations are =	, = cos , = .

- Determine the velocity and acceleration at time t = o (5 marks)
- (f) Evaluate

div
$$2^{-}$$
 + 3 (3 marks)

(g) If
$$\vec{} = (5 - 6)^{+} (2 - 4)$$
, evaluate $\int \cdot \hat{}$ along the curve C in the xy – plane,
y = x³ from point (1, 1) to (2, 8) (5 marks)

(h) Show that the vector field = $(2 +)^{+} + 2$ is conservative. (4 marks)

<u>Question Two</u> (20 Marks)

a)	If	=	+		^ +	,	→ =	^		^ — 3	and	(2 Marks)
b)	If →	= 2	^_	^ +	3	,	Compu	te ⊽ ·	→ .	⊽ × [→]	at the point (1, 1, 1)	(5 Marks)
c)	Let	→ = ^	+ ^+	F	and	→ =	then	deduce	e the	form take	en by ∇	(7 marks)
d)	Prov	ve that										

$$\vec{\nabla} \cdot \vec{} = \mathbf{3}$$
 (3 marks)

Question Three (20 Marks)

a)	Show that the vector field	=	^ +	^ +	is a gradient field.	Hence or otherwise find
	the corresponding scalar po	tentia	al.			(10 Marks)

b) Find the unit normal vector to $\phi = = 1$ at (1, 1, 1) (5 Marks)

c) Calculate div 2 $^{-}$ + 3

(5 Marks)

Question Four (20 Marks)

a) Evaluate $\int_{(,,)}^{(,,)}(+) + (y -)$ along the path = . (6 Marks) b) If $\vec{\cdot} = (+) + (+2)$, evaluate $\int \vec{\cdot} \cdot \vec{\cdot}$ along the curve + = 1, = 1 from the point (0, 1, 1) to (1, 0, 1) (9 Marks)

c) Evaluate \int where C is the segment of the line = 2 in the - plane from (-1,-2, 0) to (1,2,0 (5 Marks)

<u>Question Five</u> (20 Marks)

- a) Use Green's theorem to evaluate ∮ (3 + 4) +(2 3) where C is a circle of radius 2 with centre (0, 0) (9 Marks)
 b) Evaluate ∬ · ds where = 2 ^+ + and S is the surface bounded by = ,= = 2∓ 0 arrd1 = 3 (6 Marks)
- c) Evaluate $\iint \cdot$ where = $\hat{+} 2 \hat{-} 4$ and S is the surface of the plane 2 + = 6in the - plane and = 4 (5 Marks)