UNIVERSITY EXAMINATIONS
 2008/2009 ACADEMIC YEAR

 FOR THE DEGREE OF BACHELOR OF COMPUTER
SCIENCE AND BACHELOR OF SCIENCE ECONOMICS AND

MATHEMATICS
COURSE CODE: MATH 111
COURSE TITLE: VECTOR \& GEOMETRY
STREAM: Y1S1
DAY:
TUESDAY
TIME:
DATE:
08/12/2009

INSTRUCTIONS:

Attempt question ONE and any other TWO questions

QUESTION ONE

(a) Distinguish between as used in vectors
(i) Position and base vectors
(ii) Dot product and cross product
(4 marks)
(b) Find magnitude and direction of the vectors
(i) $3 \hat{\imath}+4 \hat{\jmath}$
(ii) $-5 \hat{\imath}+12 \hat{\jmath}$
(4 marks)
(c) In the figure below $\overrightarrow{0 S}=2 \underline{r}$ and $\overrightarrow{O Q}=3 / 2 \underline{p}$. Given that $\overrightarrow{Q K}=m \overrightarrow{Q R}$ and $\overrightarrow{P K}=m \overrightarrow{P S}$, find two
(i) Two distinct expression for $\overrightarrow{O K}$
(4 marks)
(ii) Find the values of m and n
(3 marks)
(iii) The ratios QR:KR and PK:KS
(2 marks)

(d) Show that the line joining the midpoint of two sides of a triangle is parallel to the third side and half its length.
(e) Find the direction cosines $[l, m, n]$ of the vector $\underline{r}=3 \hat{\imath}-2 \hat{\jmath}+6 \widehat{K}$
(f) Given that $\mathrm{A}(1,1,1)$ and $\mathrm{B}(13,4,5)$ find;
(i) The displacement vector $\overrightarrow{A B}$ in terms of $\hat{\imath}, \hat{\jmath} \& \hat{k}$
(ii) The unit vector parallel to $\overrightarrow{A B}$
(g) Find the equation of the line through the points $A(1,2,3)$ and $B(4,4,4)$ ($\mathbf{3}$ marks)

QUESTION TWO

(a) In triangle OAB below $\overrightarrow{O A}=\underline{a}$ and $\overrightarrow{O B}=\underline{b}$. Given that P and Q are the midpoints of OA and OB express $\overrightarrow{P Q}$ and $\overrightarrow{A B}$ in terms of \underline{a} and \underline{b} hence the geometrical relationship between $\overrightarrow{P Q}$ and $\overrightarrow{A B}$

(b) A stationary observer O observes a ship S at noon, at a point whose coordinate relative to O are $(20,15)$; the units are kilometers. The ship is moving at as steady speed $10 \mathrm{~km} / \mathrm{h}$ on a bearing 150°,
(i) Express its velocity as a column vector
(1 mark)
(ii) Write down in terms of A , its position after t hours
(iii) Find the value of t when it is due East of O
(iv) How far is it at from O at this instants
(c) Show that the equations

$$
\begin{aligned}
\left(\begin{array}{c}
y \\
-y \\
z
\end{array}\right) & =\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+m\left(\begin{array}{c}
4 \\
6 \\
-2
\end{array}\right) \text { and } \\
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
10 \\
15 \\
-3
\end{array}\right)+n\left(\begin{array}{c}
-2 \\
-3 \\
1
\end{array}\right)
\end{aligned}
$$

represent the same line
(d) Find the centroid of the triangle whose vertices are
$\mathrm{A}(1,2,3), B(3,7,4)$ and $C(2,0,5)$

QUESTION THREE

(a) By defining the necessary relationships, show that the ration theorem is given by

$$
\underline{c}=\frac{n}{m+n} \underline{a}+\frac{m}{m+n} \underline{b}
$$

(4 marks)
(b) Given the equation of the line $\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-7}{12}$ find the unit vector parallel to it. (4 marks)
(c) Given four point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , the point G whose position vector g is given as

$$
\underline{g}=1 / 4(\underline{a}+\underline{b}+\underline{c}+\underline{d})
$$

(i) Show that G lies on the line joining D to M the centroid of triangle

ABC
(ii) Find the ratio DG:GM
(d) Find the co-ordinates of the points where the line

$$
\left(\begin{array}{l}
\boldsymbol{x} \tag{6marks}\\
\boldsymbol{y} \\
\boldsymbol{z}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{2} \\
\mathbf{1}
\end{array}\right)+\left(\begin{array}{l}
\mathbf{3} \\
\mathbf{1} \\
\mathbf{4}
\end{array}\right) \text { meets the plane } x-2 y+3 z=26
$$

QUESTION FOUR

(a) Given that $\underline{r}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ show that the direction cosines $[1, \mathrm{~m}, \mathrm{n}]$ are given by

$$
l=\frac{a}{r} \quad m=\frac{b}{r} \quad n=\frac{c}{r}
$$

(b) Given that $\underline{a}=4 \hat{\imath}+3 \hat{\jmath}+12 \hat{k}$ and $\underline{b}=8 \hat{\imath}-6 \hat{\jmath}$ find
(i) a^{2}, b^{2}
(2 marks)
(ii) $\underline{a} \cdot \underline{b}$
(iii) The angle between the vectors \underline{a} and \underline{b}
(c) A destroyer sights a ship travelling with a constant velocity $5 \hat{\imath}$, whose position vector at the time of sighting is $2000(3 \hat{\imath}+\hat{\jmath})$ relative to the destroyer, distances being in m and velocity in ms^{-1}. The destroyer immediately begins to move with a velocity $k(4 \hat{\imath}+3 \hat{\jmath})$, where k is a constant in order to intercept the ship.
(i) Find k and the time of interception
(3 marks)
(ii) Find the distance between the vessels when half the time to intercept elapsed.
(d) If $\underline{a}=5 \hat{\imath}+4 \hat{\jmath}+2 \hat{k} \quad$ and $\underline{b}=4 \hat{\imath}-5 \hat{\jmath}+3 \hat{k} \quad$ Find $\underline{a} \times \underline{b}$
(3 marks)
(- marks)

QUESTION FIVE

(a) Show that $\underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
(4 marks)
(b) Find the angle between the vectors $\underline{p}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$ and $\underline{q}=4 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$
(6 marks)
(c) Find vertices of A B and C of a triangle have position vectors $\underline{a}, \underline{b}, \& \underline{c}$ respectively relative to an origin O . The point P is on BC such that $\mathrm{BP}: \mathrm{PC}=3: 1$, the point Q is on CA such that $\mathrm{CQ}: \mathrm{QA}=2: 3$; the point R is on BA produced such that $\mathrm{BR}: \mathrm{AR}=2: 1$. The position vectors of $\mathrm{PQ} \& \mathrm{R}$ are $\underline{p}, \underline{q} \& \underline{r}$ respectively.
(i) Express \underline{q} in terms of \underline{p} and \underline{r}
(ii) Show that $P, Q \& R$ are $\underline{p}, \underline{q} \& \underline{r}$ respectively.
(iii) State the ratio of the lengths $\mathrm{PQ}: \mathrm{QR}$
(e) Find the cosine of the angle between the vectors $2 \hat{\imath}+3 \hat{\jmath}-\hat{k} \& 3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k}$
(4 marks)

