

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE AND BACHELOR OF ECONOMIC \&

MATHEMATICS

COURSE CODE: MATH 111COURSE TITLE: VECTOR GEOMETRY
STREAM: Y1S1
DAY: MONDAY
TIME:9.00-11.00 A.M.
DATE:22/03/2010

INSTRUCTIONS:

1. Question ONE is compulsory.
2. Attempt question ONE and any other TWO

PLEASE TURN OVER

Question One [30 Marks]

a) Given that $\underline{r_{1}}=2 i-\hat{j}+\hat{k}, \underline{r_{2}}=\hat{i}+3 \hat{j}-2 \hat{k}, \underline{r_{3}}=-2 \hat{i}+\hat{j}-3 \hat{k}$ and $\underline{r_{4}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ find the scalars a, b, c such that $\underline{r_{4}}=a \underline{r_{1}}+b \underline{r_{2}}+c r_{3} \quad$ [4 marks]
b) Find the sum or resultant of the following displacement

A; 10 m northwest, B; $20 \mathrm{~m} 30^{\circ}$ north of east and C; 35 m due south. [3 Marks]
c) Given that A is the point $(1,3)$ and that $\overrightarrow{A B}$ and $\overrightarrow{A D}$ are $\binom{4}{-1}$ and $\binom{2}{3}$ respectively, find the coordinates of the vertices B, C and D of the parallelogram ABCD .
[3 Marks]
d) Find the centroid of the triangle whose vertices are $A(1,2,3), B(3,7,4)$ and $C(2,0,5)$
[3 Marks]
e) Find the equation of through the points $P(2,4,5)$ and $Q(7,9,4)$ hence find the coordinates of the point where this line meets the plane $\mathrm{z}=0$. [5 marks]
f) Determine the value of a so that vectors $\underline{p}=2 \hat{i}+a \hat{j}+4 \hat{k}$ and $q=5 \hat{i}+2 \hat{j}-4 \hat{k}$ are perpendicular.
[2 Marks]
g) Find the vector product of p and q where $p=3 \hat{i}-4 \hat{j}+2 \hat{k}$ and $q=2 \hat{i}+5 \hat{j}-\hat{k}$
[6 Marks]
h) Use vectors to prove the law of sines for plane triangles.
[4 Marks]

Question Two [20 Marks]

a) An automobile travels 3 km due north then 5 km northeast. Represent these displacements graphically and hence or otherwise determine the resultant displacement.
[4 marks]
In a triangle $O A B, X$ is a point on $O B$ such that $\overrightarrow{O X}=2 \overrightarrow{X B}$ and Y is a point $A B$ such that $2 \overrightarrow{\mathrm{BY}}=3 \overrightarrow{\mathrm{YA}}$.
i. Express \mathbf{x} and \mathbf{y} in terms of \mathbf{a} and \mathbf{b}.
[2 marks]
ii. Find the position vector of any point on XY and hence find the position vector of the point Z , where XY produced meets OA produced. Calculate the value of AZ/OZ
b) AT noon two boats P and Q are at points where position vectors are $4 \hat{i}+8 \hat{j}$ and $4 \hat{i}+3 \hat{j}$ respectively. Both boats are moving with a constant velocity; the velocity of P is $4 \hat{i}+\hat{j}$ and the velocity of Q is $2 \hat{i}+5 \hat{j}$ where all distances are in kilometers and time measured in hours.
i) Find the position vectors of P and Q and $\overrightarrow{P Q}$ after t hours. [4 Marks]
ii) Express the distance PQ between the boats in terms of t [2 Marks]
iii) Show that the least distance between the boats is $\sqrt{5} \mathrm{~km} \quad$ [4 Marks]

Question Three [20 Marks]

a) Show that addition of vectors is commutative.
b) If $\underline{c}=2 / 5 \underline{a}+3 / 5 \underline{b}$, show that C is a point on AB and that $\mathrm{AC}: \mathrm{CB}=3: 2$ [2 Marks]
c) Given that A and B are the points $(1,1,1)$ and $(13,4,5)$ respectively,
i. Find in terms of \hat{i}, \hat{j} and \hat{k} the displacement vector $\overrightarrow{A B}$
ii. Find the unit vector parallel to $\overrightarrow{A B}$
iii. Find the point P on $\overrightarrow{A B}$ such that $\mathrm{AP}: \mathrm{PB}=1: 3$
[4 Marks]
d) Two forces $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ of magnitudes 5.0 kilograms and 8.0 kilograms respectively act at a point P . The direction of $\overrightarrow{P Q}$ is $\mathrm{N} 20^{\circ} \mathrm{E}$, and the direction of $\overrightarrow{P R}$ is $\mathrm{N} 65^{\circ} \mathrm{E}$. Approximate the magnitude and direction of the resultant $\overrightarrow{P S}$ [6 marks]

Question Four [20 Marks]

a) Determine the angles α, β, and γ which the vector $\underline{r}=x \hat{i}+y \hat{j}+z \hat{k}$ makes with the positive directions of the coordinate axis and hence show that

$$
\begin{equation*}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \tag{5Marks}
\end{equation*}
$$

b) Show that $\underline{a} \bullet \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ given that $\underline{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and

$$
\begin{equation*}
\underline{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \tag{4Marks}
\end{equation*}
$$

c) Given that A, B and C are the points $(1,1,1),(5,0,0)$ and $(3,2,1)$ respectively find the equation which must be satisfied by the coordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of any point P in the plane ABC .
[6 Marks]
d) Find the equation of the line of intersection given that the equation of two nonparallel planes as $2 x-3 y+z=3$ and $3 x-5 y+z=8$

Question Five [20 Marks]

a) Show that $A \times B \times C=B(A \bullet C)-C(A \bullet B)$
b) Given that $\underline{a}=4 \hat{i}+3 \hat{j}+12 \hat{k}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$ find

$$
\begin{equation*}
\text { i. } \quad \underline{a} \bullet \underline{b} \tag{2Marks}
\end{equation*}
$$

ii. The angle between the two vectors \underline{a} and \underline{b}
c) Find an equation for the plane perpendicular to the vector $\underline{a}=2 \hat{i}+3 \hat{j}+16 \hat{k}$ and passing through the terminal point of the vector $\underline{b}=\hat{i}+5 \hat{j}+13 \hat{k}$. Hence find the distance from the origin to the plane.
d) Determine a unit vector perpendicular to the plane of $p=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\underline{q}=4 \hat{i}+3 \hat{j}-\hat{k}$

