KABARAK

UNIVERSITY
UNIVERSITY EXAMINATIONS
2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE COURSE CODE: MATH 111

COURSE TITLE: VECTORS \& GEOMETRY

STREAM:
 Y1S1

DAY: WEDNESDAY
TIME:
2.00-4.00 P.M.

DATE:
 23/03/2011

INSTRUCTIONS:

1. Question ONE is compulsory.
2. Attempt question ONE and any other TWO Questions

QUESTION ONE [30 MARKS]

i. Given that $\underline{r_{1}}=2 i-\hat{j}+\hat{k}, \underline{r_{2}}=\hat{i}+3 \hat{j}-2 \hat{k}, \underline{r_{3}}=-2 \hat{i}+\hat{j}-3 \hat{k}$ and $\underline{r_{4}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ find the magnitude of $2 \underline{r_{1}}-3 \underline{r_{2}}-5 \underline{r_{3}}$
[4 marks]
ii. Show that the magnitude of the vector $\stackrel{1}{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}$ is given by $|\stackrel{\mathbf{I}}{A}|=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}$
[3 Marks]
iii. Given that the wind is blowing at 12 miles/ hour in the direction $\mathrm{N} 40^{\circ} \mathrm{W}$, express its velocity as a vector.
[3 Marks]
iv. Find the work done in moving an object along a vector $\underline{r}=3 \hat{i}+2 \hat{j}-5 \hat{k}$ if the applied force is $\vec{F}=2 \hat{i}-\hat{j}-\hat{k}$
[3 Marks]
v. Determine a unit vector that is perpendicular to the plane of $\dot{A}=2 \hat{i}-6 \hat{j}-3 \hat{k}$
and $\dot{B}=4 \hat{i}+3 \hat{j}-\hat{k}$.
[5 marks]
vi. Find the value of a such that the pair of vectors are orthogonal $\underline{p}=2 \hat{i}+a \hat{j}+4 \hat{k}$ and $\underline{q}=5 \hat{i}+2 \hat{j}-4 \hat{k}$
vii. Find the direction cosines of the resultant vector of $\underline{p}=3 \hat{i}-4 \hat{j}+2 \hat{k}$ and $\underline{q}=2 \hat{i}+5 \hat{j}-\hat{k}$
[3 Marks]
viii. The centroid of triangle OAB is denoted by G . If O is the origin and $\overline{O A}=4 \hat{i}+3 \hat{j} \overline{O B}=6 \hat{i}-\hat{j}$ find $\overline{O G}$ in terms of the unit vectors \hat{i} and \hat{j}
ix. Find the angle between the vectors $\underline{a}=2 \hat{i}+3 \hat{j}$ and $\underline{b}=5 \hat{i}+\hat{j}$

QUESTION TWO [20 MARKS]

a) Evaluate $(2 \hat{i}-3 \hat{j}) \bullet(\hat{i}+\hat{j}-\hat{k}) \times(3 \hat{i}-\hat{k})$.
b) An automobile travels 3 km due north then 5 km northeast. Represent these displacements graphically and hence or otherwise determine the resultant displacement. [4 marks]
c) A stationery observer O observes a ship S at noon at a point whose coordinates relative to O are $(20,15)$; units are in kilometers. The ship is moving at a steady speed of $10 \mathrm{~km} / \mathrm{h}$ on a bearing 150°.
i) Express its velocity as a column vector.
ii) Write down in terms of t, its position after t hours
iii) Find the value of t when the ship is due East
iv) How far is it from O at this instant

QUESTION THREE [20 MARKS]

a) Points L, M, N are the mid-points of the sides $A B, B C, C A$ of the triangle $A B C$. Show that $2 \overrightarrow{A B}+3 \overrightarrow{B C}+\overrightarrow{C A}=2 \overrightarrow{L C}$
b) Given the equation of the line in the form $\frac{x-3}{5}=\frac{y-2}{3}=\frac{z+2}{7}=t$
i. Express the equation in the form $\underline{r}=\underline{a}+t \underline{u}$
ii. Show that the line passes through $(8,14,11)$
c) In a triangle OAB, X is a point on OB such that $\mathrm{OX}=2 \mathrm{XB}$ and Y is a point on AB such that $2 \mathrm{BY}=3 \mathrm{YA}$.
i. Express x and y in terms of a and b
[2 Marks]
ii. Find the position vector of any point on XY
[3 Marks]
iii. Find the position vector of the point Z, where XY produced meets OA produced.
[3 Marks]
iv. Calculate the value of AZ/OZ
[3 Marks]

QUESTION FOUR [20 MARKS]

a) Show that $\underline{a} \bullet \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ given that $\underline{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\underline{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
[4 Marks]
b) Given that $\underline{a}=4 \hat{i}+3 \hat{j}+12 \hat{k}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$ find

$$
\text { i. } \quad \underline{a} \bullet \underline{b}
$$

[2 Marks]
ii. The angle between the two vectors \underline{a} and \underline{b}
[3 Marks]
c) Given that A, B and C are the points $(1,1,1),(5,0,0)$ and $(3,2,1)$ respectively find the equation which must be satisfied by the coordinates (x, y, z) of any point P in the plane $A B C$.
[6 Marks]
d) Find the equation of the line of intersection given that the equation of two non-parallel planes as $2 x-3 y+z=3$ and $3 x-5 y+z=8$

QUESTION FIVE [20 MARKS]

b) Find an equation for the plane perpendicular to the vector $\underline{a}=2 \hat{i}+3 \hat{j}+16 \hat{k}$ and passing through the terminal point of the vector $\underline{b}=\hat{i}+5 \hat{j}+13 \hat{k}$. Hence find the distance from the origin to the plane.
[6 marks]
c) Find the area of a triangle having vertices $P(1,3,2) Q(2,-1,1) R(-1,2,3) \quad$ [4 marks]
d) Find the volume of a parallelepiped whose edges are represented by $\dot{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$

$$
B=\hat{i}+2 \hat{j}-\hat{k} \text { and } \stackrel{\prime}{C}=2 \hat{i}-\hat{j}+2 \hat{k}
$$

[5 Marks]

