UNIVERSITY EXAMINATIONS

BRIDGING CERTIFICATE COURSE IN MATHEMATICS

COURSE CODE: BMATH 001

COURSE TITLE: VECTOR AND GEOMETRY
STREAM: BRIDGING
DAY: MONDAY
TIME:
2.00-4.00 P.M.

DATE:
24/08/2009

INSTRUCTIONS:

Attempt question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a) A line passes through the points $\mathrm{A}(5,7)$ and $\mathrm{B}(4,9)$. Determine its equation in the form $=\quad+$
($\mathbf{3} \mathbf{~ m k s}$)
(b) Given that vector $\overrightarrow{ }=\begin{gathered}2 \\ 3\end{gathered}, \overrightarrow{ }=\begin{gathered}4 \\ -1\end{gathered}$ and $\overrightarrow{ }=\begin{aligned} & 3 \\ & 5\end{aligned}$, find

(6 mks)
(c) In a triangle $\mathrm{ABC}, \angle \mathrm{A}=60^{\circ}, \mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{AC}=4 \mathrm{~cm}$. Find $\angle \mathrm{B}$
(2 mks)
(d) Given that; $4+4+8+16+12=0$ is an equation of a circle, determine its centre and radius.

(4 mks)

(e) If $\rightarrow 4+3$, express OP as a column vector and hence determine the modules of OP.
(f) Find the angle subtended at centre of a circle of radius 14 cm by an arc of length 12.1 cm .
(g) A chord AB subtends an angle of 60° at the centre O . If the radius of the circle is 10 cm , calculate:
(i) The length of the major arc AB
(ii) The area of the minor segment cut off by AB take $(\pi=3.14)$
(h) Simplify $\sqrt{ }$ given that $=5 \quad \theta$.
(4 mks)

QUESTION TWO (20 MARKS)

(a) A line L_{1} is $9-6-18=0$. Determine the equation of a line
(i) L_{2} which is perpendicular to L_{1} and passes through $(6,-3)$.
(ii) L3 which is parallel to L1 and passes through (9, -3).
(b) The wiper of a Datsun car is 14 cm long. It sweeps through an angle of 100° on a flat Windscreen. Calculate the distance moved by tip of the wiper in one sweep. ($\mathbf{3} \mathbf{~ m k s}$)
(c) Express the following ratios in terms of ratios of acute angles and hence find their Values:
(i) $\operatorname{Sin} 390^{\circ}$
(ii) $\operatorname{Cos} 160^{\circ}$
(iii) $\operatorname{Tan} 320^{\circ}$
(d) Show that (i) $\tan 45^{\circ}=1$
(ii) $\cos 45^{\circ}=1 / \sqrt{2} \quad$ using a suitable triangle.
(3 mks)

QUESTION THREE (20 MARKS)

(a) Express the following in terms of $\tan 80^{\circ}$
(i) $\operatorname{Tan} 620^{0}$
(2 mks)
(ii) $\operatorname{Tan} 460^{0}$
(2 mks)
(iii) $\operatorname{Tan}-80^{0}$
(1 mks)
(b) Simplify
(i) $\overline{\sqrt{\theta}}$
(2 mks)
(ii) $\frac{\theta}{\theta}$
($\mathbf{3} \mathbf{~ m k s) ~}$
(c) Verify that $\vec{\cdot} \overrightarrow{ }=\vec{\cdot}$
(d) Given that $\overrightarrow{ }=2+3$ and $\overrightarrow{ }=5+$, Find
(i) $\overrightarrow{ }$. $\overrightarrow{ }$
(2 mks)
(ii ${ }^{\rightarrow}$
(1 mk)

Page 3of 5
(iii)
(1 mk)
(iv)The angle between \rightarrow and

QUESTION FOUR (20 MARKS)

(a) State the gradient and y - intercept of the following lines;

$$
\begin{equation*}
8+24=8 \tag{i}
\end{equation*}
$$

(ii) $6-30+6=0$

$$
\begin{equation*}
(2 \mathrm{mks}) \tag{2mks}
\end{equation*}
$$

(b) Without drawing the lines, determine which of the following pairs of lines are perpendicular;
(i) $=8+7,=-+3$
(ii) $=3+7, \quad=--$
(iii) $=-x-1, \quad=-{ }^{-1} \frac{1}{2}$
(iv) $={ }_{2} x-1,=-x-4$
(c) Determine the equation of a circle that circumscribe the triangle vertices $(1,0)(2,1)$ and $(0,2)$

(4 mks)

(d) In the figure below, 0 is the centre of the circle. Using the angles provided, find a, b, c and d

(4 mks)

(e) Show that $\sec \theta+\sec \theta \quad \theta=\sec \theta \operatorname{cosec}^{2} \theta$
(a) A point P divides AB internally in the ratio 2:5, taking any point as the origin, find the position vector of P in terms of a and b the position vectors of A and B respectively.

(5 mks)

(b) Draw a line segment $A B$ and show the position of X on $A B$ such that $A X: X B$ is
(i) $4: 7$
(ii) $-2: 5$
(iii) 3:-1
(3 mks)
(c) A chord is 4 cm away from the centre of a circle of radius 5 cm . Determine the length Of the chord.
($\mathbf{3} \mathbf{~ m k s) ~}$
(d) Show that $\frac{\theta}{\theta} \quad \theta=2+\sec \theta \cos \theta$
(e) State and prove the ratio theorem

(5marks)

