(ELAND COLEGE)

UNIVERSITY EXAMINATIONS

BRIDGING CERTIFICATE COURSE IN MATHEMATICS

AUGUST 2008 EXAMINATIONS

COURSE CODE: BMATH 001

COURSE TITLE: VECTORS AND GEOM ETRY

STREAM: BRIDGING

DAY: WEDNESDAY

DATE: $\quad 27^{\text {TH }}$ AUGUST 2008

TIME: $\quad 2.00$ PM TO 4.00 PM

INSTRUCTIONS TO CANDIDATES

1. Attempt question ONE and any other TWO questions.
2. Show your working clearly.

QUESTION ONE (30MKS)

(a) Given that $\mathbf{a} \sim=\mathbf{2 i} \mathbf{j}$ and $\mathbf{b}=\mathbf{3 i}=\mathbf{5} \mathbf{j}$

Find
(i) $a+b$
(ii) $3 a+2 b$
(iii)[a+b]
(ivl 3A[+ 2 bl I (5marks)
(b) Find the equation of the straight line that passes $A(1,6)$ and $B(5,9)$

(3marks)

(c) Find the center and radius of the circle whose equation is

$$
x^{2}+y^{2}+8 x-2 y-8=0 \quad \text { (3marks) }
$$

(d) Given that $\operatorname{Sin} A=\frac{4}{5}, \operatorname{Cos} B=\frac{5}{13}$ and A and B are acute angles. Calculate the value of the following without using tables
(i) $\quad \operatorname{Sin} A \operatorname{Cos} B+\operatorname{Cos} A \operatorname{Sin} B$
(ii) $\sin ^{2} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~A}$ (4marks)
(e) In triangle $P Q R, P=14.3 \mathrm{~cm} r=17.5 \mathrm{~cm}$ and $Q=25^{\circ}$. Calculate the length of side $P R$ (5marks)
(f) In the figure below, 0 is the center of the circle, if $\mathrm{C}=47^{\circ}$, find d, p and q
(3marks)

(g) An arc of length 4.4 cm subtends an angle of 72° at the center of a circle, calculate the
(i) Radius of the circle
(ii) Area of the segment bounded by the arc and the corresponding chord.

(4marks)

(h) i) Find the angle between the vectors $a=2 i+3 j$ and $b=5 i+j$
(3marks)
ii) Find the numbers m and n such that $m\binom{3}{5}+\mathrm{n}\binom{2}{1}=\binom{4}{9} \quad$ (2marks)

QUESTION TWO (20M ARKS)

(a) the equation of the straight line through $(5,4)$, parallel to $3 x-4 y+7=0$
(3marks)
(b) Show that the equation of a circle with center at $(-3,3)$ and radius 5 units is given by
$x^{2}+y^{2}+6 x-6 y=7 \quad$ (3marks)
(c) Express in terms of the ratios of a cute angles (i) $\operatorname{Cos} 205^{\circ} \quad$ (ii)Tan 153° (4marks)
(d) Find the length of the arc subtending an angle of 215° at the centre of the circle of radius 14 cm . (take $\pi=\frac{22}{7}$) (3marks)
(e) A ladder reaches the top of the wall of height 6 m when the end on the ground is 2.5 m from the wall. What is the length of the ladder?
(3marks)
(f) In $\Delta K L M, K=15 \mathrm{~cm}, \mathrm{~L}=25^{\circ}, \mathrm{M}=120^{\circ}$. Find m . (4marks)

QUESTION THREE (20 MARKS)

(a) Find the gradient of the line joining $A(p, q)$ and $B(r, s) \quad$ (2marks)
(b) Find if AB is parallel or perpendicular to PQ in the following cases:
$A(1,4), B(6,6) \quad P(2,-1), Q(12,3)$
(3marks)
(c) Given that the circle whose equation $x^{2}+y^{2}-7 x+2 y+c=0$ passes through (7,1),find the value of C, State the co-ordinates of the center of the circle. If $(7,1)$ is one end of the diameter of the circle, find the other end point (5marks)
(d) Find the angle subtended at the center of a circle by an arc of length 20 cm if the circumference of the circle is 60 cm .
(3marks)
(e) In a triangle, two sides are 2.8 cm and 12 cm long and the angle between them is 60°. Find the length of the third side.
(3marks)
(f) Draw a line segment CD and show the position of x where CX : XD IS
(i) $2: 5$
(ii) $3: 1$
(iii) $-2: 5$
(iv)6:-1 (4marks)

QUESTION FOUR (20MARKS)

(a) Simplify the following without using tables
(i) $\sin 45^{\circ} \cos 30^{\circ}$
(ii) $\tan 45^{\circ} \cos 60^{\circ}$
(iii) $\frac{\sin 60^{\circ} \tan 30^{\circ}}{\cos 60^{\circ}}$
(4marks)
(b) Find the values of θ from 180° to 360° inclusive which satisfy $\operatorname{Cos}\left(\theta+60^{\circ}\right)=0.5$.

(3marks)

(c) If $\sin \theta=\frac{3}{5}$, find, without using tables or calculators, the values of
(i) $\operatorname{Cos} \theta$
(ii) $\operatorname{Tan} \theta$
(d) If $S=\sin \theta$, simplify
(i) $\sqrt{\left(1-s^{2}\right)}$
(ii) $\frac{s}{\sqrt{\left(1-s^{2)}\right.}}$
(iii) $\frac{1-s^{2}}{s}$
(6marks)
(e) In triangle $A B C, a=5 \mathrm{~cm}, b=7 \mathrm{~cm}, c=9 \mathrm{~cm}$, calculate angle B and the area of the triangle.
(4marks)

QUESTION FIVE (20M KS)

(a) In the figure below find:

(b) If $p=\binom{3}{2}$ and $q=\binom{5}{1}$, find
(i) $|p|$ and $\left|q_{q}\right|$
(ii) $|p+q|$
(iii) $|q-p|$ correct to 2 decimal places. (5marks)
(c) Given that A is the point $[2,5]$ and that B is the point $[10,-1]$, find the position vector of a point P on $A B$ such that, $A P: P B=2: 3$. (3marks)
(d) Find the equation of the straight line joining the origin to the mid- point of the line joining $A(3,2)$ and $B(5,-1)$. (4marks)
(e) Find the center and radius of a circle given by

$$
3 x^{2}+3 y^{2}+6 x+12 y+9=0 \quad \text { (4marks) }
$$

