UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE CERTIFICATE OF BRIDGING MATHEMATICS

COURSE CODE: BMATH 001
COURSE TITLE: VECTORS AND GEOMETRY
STREAM: BRIDGING
DAY: MONDAY
TIME:
8.30 - 10.30 A.M

DATE:
08/12/2008

INSTRUCTIONS TO CANDIDATES:

1. Attempt OUESTION ONE and ANY OTHER TWO (2) OUESTIONS
2. Show all your workings

PLEASE TURN OVER

(a) Show that:
i. $\quad \operatorname{Sin} 60=\frac{\sqrt{3}}{2}$
ii. Tan $30=\frac{1}{\sqrt{3}}$ using a suitable triangle
(b) Find the general equation of a line that is perpendicular to line AB given that AB passes through $\mathrm{A}(6,1)$ and $\mathrm{B}(8,5)$
(c) Determine the area of the shaded region in the figure below:

(3 marks)
(d) Given that $\vec{A}=\binom{2}{-3}$ and $\vec{B}\binom{-1}{4}$ Determine

$$
\text { i. } \quad 2 \vec{A}+\vec{B}
$$

(3 marks)
ii. $|\vec{A}+\vec{B}|$
(3 marks)
(e) Express the following obtuse angles in terms of acute angles and hence find their values
(i) $\sin 170$
(ii) $\cos 160^{\circ}$
(iii) $\tan 320$
(f) Determine the center and radius of a circle whose equation is

$$
\begin{equation*}
2 x^{2}+2 y^{2}+4 x+8 y+6=0 \tag{4marks}
\end{equation*}
$$

(g) Show that $(\sec \Theta-\tan \Theta)(\operatorname{Cosec} \Theta+1)=\operatorname{Cot} \Theta$

QUESTION TWO (20 MARKS)

(a) Without drawing the lines determine which of the following lines are perpendicular :

$$
\begin{aligned}
& \text { (i) } y=2 x+7 \\
& y=-1 / 2 x+3 \\
& \text { (ii) } y=2 x+7 \\
& y=-2 x+5
\end{aligned}
$$

(b) Find the equation of a line that passes through $(-1,3)$ and is parallel to the line

$$
2 x+7 y-8=0
$$

(c) Find the equation of a circle whose centre is $(5,4)$ and passes the point $(0,5)$ and

$$
(4,1)
$$

(d) The wiper of a Volvo is 30 cm long. It sweeps through an angle of 120° on a flat windscreen. Calculate the distance covered by the tip y of the wiper in one sweep.
(Take $\Pi=3.14$)
(e) Simplify the following trigonometrical expression

$$
\begin{align*}
& \text { i. } \frac{\sqrt{\operatorname{cosec}^{2} \theta-1}}{\operatorname{cosec} \theta} \\
& \text { ii. } \frac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}} \tag{4marks}
\end{align*}
$$

QUESTION THREE (20 MARKS)

(a) Show that the addition of vectors is commutative
(b) If $\vec{A}=\binom{5}{6}, \vec{B}=\binom{-3}{4}$
i. $\vec{A}+\vec{B}$
ii. $\vec{A}+\vec{B}$
(4marks)
(c) (i) State the cosine rule for any triangle
(ii) In triangle $\mathrm{PQR}, \mathrm{q}=3 \mathrm{~cm}, \mathrm{r}=5 \mathrm{~cm}$, and $\mathrm{p}=120^{\circ}$. Determine the value of p and the area of the triangle
(d) Given that $\cos x=\frac{5}{13}$, where $0 \leq x \geq 90^{\circ}$

Find without using tables or electronic calculators
i. $\quad \operatorname{Sin} x$
ii. Tanx
iii. $\quad \operatorname{Sec}(180+x)$
(6 marks)
(e) In triangle $\mathrm{ABC}, \mathrm{A}=120^{\circ}, \mathrm{BC}=20 \mathrm{~cm}$ and $\mathrm{AC}=8 \mathrm{~cm}$. Find B .

QUESTION FOUR (20 MARKS)

(a) State any two properties of a chord of a circle.
(b) Consider the circle below:

If the radius of the circle is 5 cm and ON is 3 cm . Determine
i. The angle OAN
(2 marks)
ii. The length of the chord AB
iii. The length of the shaded region
(c) Given that $\vec{A}=2 \mathrm{i}+3 \mathrm{j}$ and $\vec{B}=5 \mathrm{i}+\mathrm{j}$. Determine
i. $\quad \vec{B} \cdot \vec{A}$
(2 Marks)
ii. $|\vec{A}|$
(1 Mark)
iii. $\quad|\vec{B}|$
iv. The angle between \vec{A} and \vec{B}
(1Mark)
(d) Verify that the scalar product of two vectors is commutative.

QUESTION FIVE
 (20 MARKS)

(a) State and prove the ratio theorem.
(b) A point X divides AB in the ratio 2:5.

Express X the position vector of A and B respectively:
(c) State the gradient and y intercept of the following lines:

$$
\begin{array}{ll}
\text { i. } & 2 y=6 x+4 \\
\text { ii. } & 3 y-15 x+3=0 \tag{2marks}
\end{array}
$$

(d) Draw a line segment $A B$ and show the position of X on $A B$ such that $A X: X B$ is

$$
\begin{array}{cc}
\text { i. } & 2: 7 \\
\text { ii. } & -3: 5
\end{array}
$$

(e) Find the values of X, Y and Z in the figure below given that 0 is the centre of the circle

(3marks)
(c) Prove the following trigonometrical identity

$$
\frac{1}{1+\sin x}+\frac{1}{1-\sin x}=2 \sec ^{2} x
$$

