
STREAM: BRIDGING
DAY: THURSDAY
TIME:

$$
9.00-11.00 \text { A.M. }
$$

DATE:10/12/2009

INSTRUCTIONS TO CANDIDATES:

Answer Question ONE and any other TWO questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Given that vector $\vec{A}=\binom{3}{2}, \vec{B}=\binom{-1}{4}$ and $\vec{C}=\binom{5}{3}$, find
(i) $\vec{A}+\vec{B}$
(ii) $\vec{B}+\vec{C}$
(iii) $\vec{A}+(\vec{B}+\vec{C})$
(6 marks)
(b) Determine the equation of a line that passes through

$$
\begin{equation*}
A(5,7) \text { and } B(4,9) \text { in the form } y=m x+c \tag{3marks}
\end{equation*}
$$

(c) In a triangle $\mathrm{PQR},<\mathrm{P}=60^{\circ}, \mathrm{QR}=10 \mathrm{~cm}$ and $\mathrm{PR}=4 \mathrm{~cm}$. Find $<\mathrm{Q}$.
(2 marks)
(d) Given that $2 x^{2}+2 y^{2}+4 x+8 y+6=0$ is an equation of a circle, determine its centre and radius.
(e) Determine the length of an arc of a circle radius 14 cm which subtends an angle of 49.5°
(f) Given that $\overrightarrow{O P}=3 i+4 j$, express $O P$ as a column vector and determine its modules.
(3 marks)
(g) Simplify $\frac{\sqrt{x^{2}-16}}{x}$ given that $x=4 \sec \theta$
(4 marks)
(h) A chord AB subtends an angle of 60° at the centre O . If the radius of the circle is 10 cm , calculate;
(i) The length of the major Arc AB.
(2 marks)
(ii) The area of the minor segment cut off by AB (take $\pi=3.14$)

QUESTION TWO (20 MARKS)

(a) Given that $\vec{A}=2 i+3 j$ and $\vec{B}=5 i+j$, find
(i) $\vec{B} \cdot \vec{A}$
(ii) $|\vec{A}|$
(iii) $|\vec{B}|$
(iv) The angle between \vec{A} and \vec{B}
(b) State and prove the ratio theorem.
(c) Draw a line segment $A B$ and show the position of X on $A B$ such that $A X: X B$ is (i) $4: 7$
(ii) $-2: 5$
(iii) $3:-1$
(3 marks)
(d) Verify that $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
(5 marks)
(e) Given that $\vec{A}=\binom{4}{2}, \vec{B}=\binom{4}{-1}$ and $\vec{C}=\binom{3}{2}$

Find;
(i) $\vec{A}+\vec{B}$
(ii) $\vec{B}+\vec{C}$
(2 marks)

QUESTION THREE (20 MARKS)

(a) Express the following ratios in terms of acute angles and hence find their values;
(i) $\sin 390^{\circ}$
(ii) $\cos 160^{\circ}$
(iii) $\tan 320^{\circ}$
(6 marks)
(b) Show that;
(i) $\tan 45^{\circ}=1$
(ii) $\sin 45^{\circ}=\frac{1}{\sqrt{2}}$ using a suitable triangle.
(4 marks)
(c) Show that $\sec \theta+\operatorname{cosec} \theta \cot \theta=\sec \theta \operatorname{cosec}^{2} \theta$
(4 marks)
(d) State the gradient and y - intercept of the following lines;
(i) $8 y+24 x=8$
(2 marks)
(ii) $6 y-30 x+6=0$
(iii) $3 y=7+6 x$

QUESTION FOUR (20 MARKS)

(a) Determine the equation of a circle that circumscribe the triangle with vertices $A(1,0)$, $B(2,1)$ and $C=(0,2)$
(5 marks)
(b) A line L_{1} is $9 x-6 y-18=0$. Determine the equation of a line.
(i) $\quad L_{2}$ which is perpendicular to L_{1} and passes though $(6,-3)$
(4 marks)
(ii) $\quad L_{3}$ which is parallel to L_{1} and passes through $(9,-3)$
(4 marks)
(c) A point P divides AB internally in the ratio $2: 5$, taking any point as the origin, find the position vector of P in terms of \boldsymbol{a} and \boldsymbol{b} the position vectors of A and B respectively.
(4 marks)
(d) A chord is 4 cm away from the centre of a circle of radius 5 cm . Calculate its length
(3 marks)

QUESTION FIVE (20 MARKS)

(a) Show that $\frac{(\sin \theta+\cos \theta)^{2}}{\sin \theta \cos \theta}=2+\sec \theta \operatorname{cosec} \theta$
(3 marks)
(b) In the figure below, O is the centre of the centre of the circle. Using the angles provided, find a, b, c and d.

(c) Without drawing the lines, determine which of the following pairs of axes are perpendicular;
(i) $y=8 x+7, \quad y=1 / 8 x+3$
(ii) $y=3 x+7, \quad y=-\frac{1}{3} x$
(iii) $y=2 / 7 x-1, \quad y=\frac{-2}{7} x-1 / 2$
(iv) $y=3 / 2 x-1, \quad y=-2 / 3 x-4$
(4 marks)
(d) In a triangle $\mathrm{PQR}, \mathrm{p}=2.5 \mathrm{~cm}, \mathrm{q}=3.6 \mathrm{~cm}$ and $\mathrm{r}=5.0 \mathrm{~cm}$. Calculate the angles P and R .
(4 marks)
(e) In the figure below, chord PQ and RS intersect externally at A . If $\mathrm{PQ}=13 \mathrm{~cm}$, $R S=8 \mathrm{~cm}$ and $A Q$ is 1 cm shorter than AS, determine the lengths of AQ and AS.

(f) Express the following in terms of $\tan 80^{\circ}$
(i) $\tan 620^{\circ}$
(ii) $\tan 460^{\circ}$
(2 marks)

