UNIVERSITY EXAMINATIONS

BRIDGING CERTIFICATE COURSE IN MATHEMATICS

COURSE CODE: BMATH 001

COURSE TITLE: VECTOR AND GEOMETRY STREAM: BRIDGING

DAY: TUESDAY
TIME:
11.00-1.00 P.M.

DATE:
12/01/2010
INSTRUCTIONS:
Attempt question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a) A line passes through the points $\mathrm{A}(5,7)$ and $\mathrm{B}(4,9)$. Determine its equation in the form $y=m x+c$
(b) Given that vector $\vec{A}=\binom{2}{3}, \vec{B}=\binom{4}{-1}$ and $\vec{C}=\binom{3}{5}$, find
(i) $\vec{A}+\vec{B}$
(ii) $\vec{B}+\vec{C}$
(iii) $\vec{A}+(\vec{B}+\vec{C})$
(6 mks)
(c) In a triangle $\mathrm{ABC}, \angle \mathrm{A}=60^{\circ}, \mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{AC}=4 \mathrm{~cm}$. Find $\angle \mathrm{B}$
(2 mks)
(d) Given that; $4 x^{2}+4 y^{2}+8 x+16 y+12=0$ is an equation of a circle, determine its centre and radius.
(e) If $\overrightarrow{O P}=4 i+3 j$, express OP as a column vector and hence determine the modules of OP.
(f) Find the angle subtended at centre of a circle of radius 14 cm by an arc of length 12.1 cm .
(g) A chord AB subtends an angle of 60° at the centre O . If the radius of the circle is 10 cm , calculate:
(i) The length of the major arc AB
(ii) The area of the minor segment cut off by AB take $(\pi=3.14)$
(h) Simplify $\frac{\sqrt{x^{2}-25}}{x}$ given that $x=5 \sec \theta$.
(4 mks)

QUESTION TWO (20 MARKS)

(a) A line L_{1} is $9 x-6 y-18=0$. Determine the equation of a line
(i) L_{2} which is perpendicular to L_{1} and passes through $(6,-3)$.
(ii) L 3 which is parallel to L 1 and passes through $(9,-3)$.
(b) The wiper of a Datsun car is 14 cm long. It sweeps through an angle of 100° on a flat Windscreen. Calculate the distance moved by tip y of the wiper in one sweep. ($\mathbf{3} \mathbf{~ m k s}$)
(c) Express the following ratios in terms of ratios of acute angles and hence find their Values:
(i) $\operatorname{Sin} 390^{\circ}$
(ii) $\operatorname{Cos} 160^{\circ}$
(iii) $\operatorname{Tan} 320^{\circ}$
(d) Show that (i) $\tan 45^{\circ}=1$
(ii) $\cos 45^{\circ}=1 / \sqrt{2} \quad$ using a suitable triangle.

QUESTION THREE (20 MARKS)

(a) Express the following in terms of $\tan 80^{\circ}$
(i) $\operatorname{Tan} 620^{0}$
(2 mks)
(ii) $\operatorname{Tan} 460^{0}$
(2 mks)
(iii) $\mathbf{T a n}-\mathbf{8 0}{ }^{\mathbf{0}}$
(1 mk)
(b) Simplify

> (i) $\frac{1}{\sqrt{16-16 \sin ^{2} \theta}}$ (ii) $\frac{\tan \theta}{1+\tan ^{2} \theta}$
(c) Verify that $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
(4 mks)
(d) Given that $\vec{A}=2 i+3 j$ and $\vec{B}=5 i+j$, Find
(i) $\vec{B} \cdot \vec{A}$
(2 mks)
(ii $|\vec{A}|$
(1 mk)
(iii) $|\vec{B}|$
(iv)The angle between \vec{A} and \vec{B}

QUESTION FOUR (20 MARKS)

(a) State the gradient and y - intercept of the following lines;
(i) $8 y+24 x=8$
(ii) $6 y-30 x+6=0$
(b) Without drawing the lines, determine which of the following pairs of lines are perpendicular;
(i) $y=8 x+7, \quad y=\frac{1}{8} x+3$
(ii) $y=3 x+7, \quad y=-\frac{1}{3} x$
(iii) $y=\frac{2}{7} x-1, \quad y=\frac{-2}{7} x-1 / 2$
(iv) $y=3 / 2 x-1, y=\frac{-2}{3} x-4$
(c) Determine the equation of a circle that circumscribe the triangle vertices $(1,0)(2,1)$ and $(0,2)$

(4 mks)

(d) In the figure below, 0 is the centre of the circle. Using the angles provided, find a, b, c and d

(4 mks)

(e) Show that sec $\theta+\operatorname{cosec} \theta \cot \theta=\sec \theta \operatorname{cosec}^{2} \theta$

QUESTION FIVE (20 MARKS)

(a) A point P divides AB internally in the ratio $2: 5$, taking any point as the origin, find the position vector of P in terms of a and b the position vectors of A and B respectively.
(b) Draw a line segment $A B$ and show the position of X on $A B$ such that $A X: X B$ is
(i) $4: 7$
(ii) $-2: 5$
(iii) $3:-1$
(3 mks)
(c) A chord is 4 cm away from the centre of a circle of radius 5 cm . Determine the length Of the chord.
(d) Show that $\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}=2+\sec \theta \cos \sec \theta$
(e) State and prove the ratio theorem

