

COURSE CODE: PMATH 021

COURSE TITLE: VECTORS AND GEOMETRY

STREAM: SEMESTER TWO

DAY:

THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
25/03/2010

INSTRUCTIONS:

Answer ALL questions in SECTION A and any TWO in SECTION B

PLEASE TURN OVER

SECTION A (30 marks)

1. Distinguish between
a) Gradient and y intercept of a line.
[2 marks]
b) Sector and segment
2. Find an equation of the line through $\mathrm{P}(5,-7)$ that is parallel to the line $6 x+3 y=4$
[2 marks]
3. Suppose a major league baseball player has hit five home runs in the first 14 games and he keeps up this pace throughout the 162-game season
i. Express the number y of the home runs in terms of the number x of games played.
ii. How many home runs will the player hit for the season? [2 marks]
4. Three of the points given lie on a circle whose centre is at the origin, State which points and the radius of the circle. $\mathrm{A}(-1,7), \mathrm{B}(5,-5), \mathrm{C}(-7,5)$ and $\mathrm{d} 97,-1)$
[4 marks]
5. $\mathrm{O}(0,0)$ is the centre of the circle which passes through $\mathrm{A}(5,0)$. [4 marks]
i. Find the equation of the circle
ii. The point P on the circle has coordinates $(4, \mathrm{k})$ find k
6. Given that $90^{\circ}<\theta<270^{\circ}$, find θ when
a) $\tan \theta=\sqrt{3}$
[3 marks]
b) $\cos \theta=-\sqrt{3} / 2$
7. Two boats leave the harbor at 9.00 A.M. Boat A sails north at $20 \mathrm{~km} / \mathrm{h}$. Boat B sails east at $15 \mathrm{Km} / \mathrm{h}$. How far apart are the two boats at noon? [4 marks]
8. In triangle $P Q R, p=5 \mathrm{~cm}, q=7 \mathrm{~cm}$ and $\mathrm{r}=9 \mathrm{~cm}$. Find the area of the triangle.
[3 marks]

SECTION B 40 Marks

9.

a) Define the terms scalar and vector and hence state which of the following are scalars and vectors; momentum, magnetic field intensity, calorie and specific heat.
b) Solve the equation $\tan \theta=2 \sin \theta$ for the values of $0 \leq \theta \leq 360^{\circ}$ [5 marks]
c) A line is drawn through the point $(2,3)$ making an angle of 45° with the positive direction of the x-axis and it meets the line $x=6$ at P. Find the
i. Distance of P from the origin
ii. The equation of the line through P perpendicular to OP
10.
a) In triangle $\mathrm{ABC} \mathrm{a}=5 \mathrm{~cm}, \mathrm{~b}=7 \mathrm{~cm}$ and $\mathrm{c}=9 \mathrm{~cm}$. Calculate angle B and the area of the triangle.
b) Given $\mathrm{A}(-3,1)$ and $\mathrm{B}(5,4)$, find the equation of the perpendicular bisector of the line segment AB .
c) Use the slope-intercept form to find the slope and the y-intercept of the given lines.
i. $2 \mathrm{x}=15-3 \mathrm{y}$
ii. $4 x-3 y=9$
d) Simplify the following without using tables..

$$
\begin{array}{ll}
\text { i. } & \sin 30^{\circ} \cos 30^{\circ} \\
\text { ii. } & \tan 45^{\circ}+\cos 45^{\circ} \sin 45^{\circ} \tag{6Marks}
\end{array}
$$

11.

a) Show that the following two circles given by the equations $x^{2}+y^{2}-6 x-8 y+9=0, x^{2}+y^{2}=9$ are orthogonal.
[6 Marks]
b) P, Q, R are the points $(5,-3),(-6,1),(1,8)$ respectively. hence
a. Show that triangle PQR is isosceles
b. find the coordinates of the mid point of the base.
c) AB is a chord of a circle centre O and radius 14 cm . If the angle AOB is 80°, calculate the perpendicular bisector of the chord AB to the minor arc AB .
[6 marks]
12.
a) Given the vectors find $\underline{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \underline{b}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ and $\underline{c}=-\hat{i}+3 \hat{j}-2 \hat{k}$ determine
i. $\underline{a}+\underline{b}$
[2 marks]
ii. $2 \underline{a}+3 \underline{b}-2 \underline{c}$
[4 marks]
b) Suppose X lies on ST such that $\mathrm{SX}: \mathrm{XT}=2: 5$, express the position vector in terms of the vectors \underline{s} and t
[4 marks]
c) Determine the angle between the two vectors $\underline{a}=4 \hat{i}+3 \hat{j}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$
[6 marks]
d) If $\vec{a}=2 \hat{i}-3 \hat{j} ; \quad \vec{b}=4 \hat{i}-2 \hat{j}$; Find $|2 \vec{a}-3 \vec{b}|$
[4 marks]

