KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE CERTIFICATE OF PRE – UNIVERSITY MATHEMATICS

COURSE CODE: PMATH 021

COURSE TITLE: VECTORS AND GEOMETRY

- STREAM: SEMESTER TWO
- DAY: THURSDAY
- TIME: 9.00 11.00 A.M.
- DATE: 25/03/2010

INSTRUCTIONS:

Answer ALL questions in SECTION A and any TWO in SECTION B

PLEASE TURN OVER

SECTION A (30 marks)

- 1. Distinguish between
 - a) Gradient and y intercept of a line. [2 marks]
 - b) Sector and segment [2 marks]
- 2. Find an equation of the line through P(5, -7) that is parallel to the line 6x + 3y = 4 [2 marks]
- 3. Suppose a major league baseball player has hit five home runs in the first 14 games and he keeps up this pace throughout the 162-game season
 - i. Express the number y of the home runs in terms of the number x of games played. [1 mark]
 - ii. How many home runs will the player hit for the season? [2 marks]
- 4. Three of the points given lie on a circle whose centre is at the origin, State which points and the radius of the circle. A(-1, 7), B(5, -5), C(-7, 5) and d97, -1) [4 marks]
- 5. O(0, 0) is the centre of the circle which passes through A(5, 0). [4 marks]
 - i. Find the equation of the circle
 - ii. The point P on the circle has coordinates (4, k) find k
- 6. Given that $90^{\circ} < \theta < 270^{\circ}$, find θ when
 - a) $\tan \theta = \sqrt{3}$ [3 marks]
 - b) $\cos\theta = -\frac{\sqrt{3}}{2}$ [3 marks]
- Two boats leave the harbor at 9.00 A.M. Boat A sails north at 20km/h. Boat B sails east at 15Km/h. How far apart are the two boats at noon? [4 marks]
- 8. In triangle PQR, p = 5 cm, q = 7 cm and r = 9 cm. Find the area of the triangle. [3 marks]

SECTION B 40 Marks

9.

- a) Define the terms scalar and vector and hence state which of the following are scalars and vectors; momentum, magnetic field intensity, calorie and specific heat.
 [5 marks]
- b) Solve the equation $\tan \theta = 2\sin \theta$ for the values of $0 \le \theta \le 360^{\circ}$ [5 marks]
- c) A line is drawn through the point (2, 3) making an angle of 45^0 with the positive direction of the x-axis and it meets the line x = 6 at P. Find the
 - i. Distance of P from the origin [5 marks]
 - ii. The equation of the line through P perpendicular to OP [5 marks]

10.

- a) In triangle ABC a = 5 cm , b = 7 cm and c = 9 cm. Calculate angle B and the area of the triangle. [5 marks]
- b) Given A(-3, 1) and B(5, 4), find the equation of the perpendicular bisector of the line segment AB. [5 marks]
- c) Use the slope-intercept form to find the slope and the y-intercept of the given lines.

i.
$$2x = 15 - 3y$$

ii. $4x - 3y = 9$ [4 marks]

d) Simplify the following without using tables..

i.
$$\sin 30^{\circ} \cos 30^{\circ}$$

ii. $\tan 45^{\circ} + \cos 45^{\circ} \sin 45^{\circ}$ [6 Marks]

11.

a) Show that the following two circles given by the equations

$$x^{2} + y^{2} - 6x - 8y + 9 = 0$$
, $x^{2} + y^{2} = 9$ are orthogonal. [6 Marks]

b) P, Q, R are the points (5, -3), (-6, 1), (1, 8) respectively. hence

a.	Show that triangle PQR is isosceles	[4 marks]
b.	find the coordinates of the mid point of the base.	[4 marks]

c) AB is a chord of a circle centre O and radius 14 cm. If the angle AOB is 80⁰, calculate the perpendicular bisector of the chord AB to the minor arc AB.

[6 marks]

12.

- a) Given the vectors find $\underline{a} = 2\hat{i} \hat{j} + 3\hat{k}$, $\underline{b} = 3\hat{i} + 2\hat{j} 4\hat{k}$ and $\underline{c} = -\hat{i} + 3\hat{j} 2\hat{k}$ determine
 - i. $\underline{a} + \underline{b}$ [2 marks]
 - ii. $2\underline{a} + 3\underline{b} 2\underline{c}$ [4 marks]
- b) Suppose X lies on ST such that SX:XT = 2:5, express the position vector in terms of the vectors \underline{s} and \underline{t} [4 marks]
- c) Determine the angle between the two vectors $\underline{a} = 4\hat{i} + 3\hat{j}$ and $\underline{b} = 8\hat{i} 6\hat{j}$

d) If $\vec{a} = 2\hat{i} - 3\hat{j}; \quad \vec{b} = 4\hat{i} - 2\hat{j};$ Find $|2\vec{a} - 3\vec{b}|$ [6 marks] [4 marks]