UNIVERSITY

UNIVERSITY EXAMINATIONS
2008/2009 ACADEMIC YEAR

CERTIFICATE IN BRIDGING MATHEMATICS

COURSE CODE: BMATH 001

COURSE TITLE: VECTOR \& GEOMETRY
STREAM: BRIDGING
DAY: TUESDAY
TIME: $\quad 9.00-11.00$ AM
DATE: 01/09/2009

INSTRUCTIONS:
Attempt Question ONE and Any other TWO

PLEASE TURN OVER

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE (COMPULSORY 30 MARKS)

a) In the figure below, TA is a tangent to the circle O and angle $\mathrm{CAT}=70^{\circ}$. Find the value of:
i. Angle < CBA
(2 marks)
ii. Angle $<$ BTA

b) b. Find the value of $(\tan \mathrm{A}-\cos \mathrm{A})$ if $\sin \mathrm{A}=12 / 13$ when A is obtuse. (3 marks)
c) define the following terms:-
i. Arc.
(1 mark)
ii. Chord
(1 mark)
iii. Segment
(1 mark)
iv. Sector
(1 mark)
d) Given that $\cos \Theta=2 / 3$, where θ is an acute angle, obtain $\cos (90-\theta)$, $\tan \Theta$, and $\sec ^{2}$
Θ. Without using tables or a calculator leaving your answer in simplified surd form.
(5 marks)
e) in the following questions solve for θ for $0^{\circ} \leq \theta \leq 360^{\circ}$
i. $4 \sin (\theta+20)^{0}=3$
(2 marks)
ii. $2 \sin ^{2}+\sin \theta=0$
(2 marks)
iii. $4 \sin ^{2} \theta+4 \cos \theta=5$
f) f. Show that the points $\mathrm{A}(1,2,3), \mathrm{B}(3,8,1), \mathrm{C}(7,20,-3)$ are collinear
g) find numbers M and N such that
$\mathrm{M} \quad\left[\begin{array}{l}3 \\ 5\end{array}\right]+\mathrm{N}\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 9\end{array}\right]$
h) Find the radius and the coordinates of the centre of the circle $2 x^{2}+2 y^{2}-8 x+5 y+10=0$ (4 marks)

OUESTION TWO (20 marks)

a) Prove that $\mathrm{P}=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}$ is a perpendicular to $\mathrm{q}=5 \mathrm{i}+2 \mathrm{j}-4 \mathrm{k} \quad$ (2 marks)
b) Given that $a=4 i+3 j+12 k$
i. $\quad B=8 \mathrm{i}-6 \mathrm{j}$,

Find $\mathrm{a}^{2}, \mathrm{~b}^{2}$ and $\mathrm{a}-\mathrm{b}$
Hence find the angle between the vectors a and $b \quad$ (6 marks)
c) Find the centroid of the triangle whose vertices are $\mathrm{A}(1,2), \mathrm{B}(3,7)$ and $\mathrm{C}(2,3)$
(3 marks)
d) Find the magnitude and directions of the vectors:-

i.	$3 \mathrm{i}+4 \mathrm{j}$	$(1$ mark $)$
ii.	$-5 \mathrm{i}+12 \mathrm{j}$	$(1$ mark $)$
iii.	$\mathrm{i}-\mathrm{j}$	$(1$ mark $)$
iv.	-10 j	$(1$ mark $)$

e) prove that if $\mathrm{P}=\hat{\mathrm{h}} \mathrm{a}+\mathrm{ks}_{\mathrm{s}} \mathrm{b}$ represents the point P on the line AB , then $\hat{\mathrm{h}}+\mathrm{k}_{s}=1$
(5 marks)

QUESTION THREE(20 MARKS)

a) Find the value of Θ for $0^{\circ}<\Theta<90^{\circ}$ given that

i.	$\operatorname{Sin}\left(\theta+30^{\circ}\right)=\cos 2 \theta$	$(2$ marks $)$
ii.	$\operatorname{Sin} \theta=\cos \left(2 \Theta-30^{\circ}\right)$	$(2$ marks $)$

b) A parallelogram has diagonals of lengths 12 cm and 15 cm that intersect. How long are the sides of the parallelogram?
c) In triangle $\mathrm{PQR}, \mathrm{QR}=5 \mathrm{~cm}$ and $\angle \mathrm{QPR}=60^{\circ}$

Calculate the radius of the circumcircle of the triangle.
d) The perimeter of a triangle fields is 120 m . Two of the sides are 21 m and 40 m . Calculate the largest angle of the fields
e) Without using mathematical tables or electron calculators and leaving your answer in the surd form where necessary, obtain:
i. $\operatorname{Cos}\left(-180^{\circ}\right)$
(1 mark)
ii. $\operatorname{Sin}\left(540^{\circ}\right)$
(1 mark)
iii. $\operatorname{Tan}\left(135^{\circ}\right)$

QUESTION FOUR (20 MARKS)

a) A chord 12 cm long is on a circle of radius 10 cm . Find the distance of the chord from the centre of the circle.
b) Find the perimeter of a semi-circle protractor whose radius is 14 cm . (3 marks)
c) The wiper of a bus is 40 cm long. It sweeps out through an angle of 120° non a flat windscreen. Calculate the distance moved by the tip of the wiper in one sweep.
(5 marks)
d) The figure below shows a circle ABCD in which chord AB and CD are equal. Show that:-
i. $\mathrm{AD}=\mathrm{BC}$
ii. AC is parallel to BD
(4 marks)

e) In the figure below find x and y
(4 marks)

QUESTION FIVE (20 MARKS)

a) Find the equation of the circle whose centre is at the point $(2,1)$ and which passes through the point $(4,-3)$
(4 marks)
b) Find the equation of the straight line which passes through the point $(2,-1)$ and parallel to the line $3 x+5 y=1$
(3 marks)
c) Solve the following pair of simultaneous equations graphically.

$$
\begin{aligned}
& 4 x-3 y=12 \\
& X=2 y=2
\end{aligned}
$$

d) Find the gradient of the line joining $R(4,8)$ and $S(5,-2)$
e) Find the equation of the straight line joining the points $(-5,2)$, and $(3,-4)(2$ marks $)$
f) Prove that the four points $(4,0),(7,-3),(-2,-2),(-5,1)$ are the vertices of a parallelogram and find the equation of the diagonals
(5 marks)

