

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

CERTIFICATE IN BRIDGING MATHEMATICS

COURSE CODE: BMATH 001

COURSE TITLE: VECTOR & GEOMETRY

STREAM: BRIDGING

DAY: TUESDAY

TIME: 9.00- 11.00 AM

DATE: 01/09/2009

INSTRUCTIONS:

Attempt Question ONE and Any other TWO

PLEASE TURN OVER

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE (COMPULSORY 30 MARKS)

- a) In the figure below, TA is a tangent to the circle O and angle CAT=70⁰. Find the value of :
 - i. Angle < CBA (2 marks)
 - ii. Angle< BTA (2 marks)

- b) b. Find the value of $(\tan A \cos A)$ if $\sin A = 12/13$ when A is obtuse. (3 marks)
- c) define the following terms:
 - i. Arc. (1 mark)
 - ii. Chord (1 mark)
 - iii. Segment (1 mark)
 - iv. Sector (1 mark)
- d) Given that $\cos \Theta = 2/3$, where Θ is an acute angle, obtain $\cos (90-\Theta)$, $\tan \Theta$, and $\sec^2 \Theta$. Without using tables or a calculator leaving your answer in simplified surd form. (5 marks)
- ^{e)} in the following questions solve for θ for $0^0 \le \theta$ < 360°
 - i. $4 \sin (\Theta + 20)^0 = 3$ (2 marks)
 - ii. $2 \sin^2 + \sin \theta = 0$ (2 marks)
 - iii. $4\sin^2 \Theta + 4\cos \Theta = 5$ (2 marks)
- f) f. Show that the points A(1,2,3), B(3,8,1), C(7,20,-3) are collinear (2 marks)
- g) find numbers M and N such that

$$\mathbf{M} \qquad \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \mathbf{N} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$$
 (2 marks)

h) Find the radius and the coordinates of the centre of the circle $2x^2+2y^2-8x+5y+10=0$ (4 marks)

QUESTION TWO (20 marks)

- a) Prove that P=2i+3j+4k is a perpendicular to q=5i+2j-4k(2 marks)
- b) Given that a=4i+3j+12k

i.
$$B = 8i - 6j$$
,

Find a^2 , b^2 and a-b

Hence find the angle between the vectors a and b

(6 marks)

c) Find the centroid of the triangle whose vertices are A(1,2), B(3,7) and C(2,3)

(3 marks)

d) Find the magnitude and directions of the vectors:-

i.
$$3i + 4j$$

ii.
$$-5i + 12j$$

iv. -10j

e) prove that if $P = \hat{h}a + kb$ represents the point P on the line AB, then $\hat{h} + k = 1$ (5 marks)

QUESTION THREE(20 MARKS)

a) Find the value of Θ for $0^{0} < \Theta < 90^{0}$ given that

i.
$$Sin(\Theta + 30^{\circ}) = cos 2 \Theta$$

(2 marks)

ii. Sin
$$\Theta = \cos(2\Theta - 30^{\circ})$$

(2 marks)

- b) A parallelogram has diagonals of lengths 12 cm and 15 cm that intersect. How long are the sides of the parallelogram? (3 marks)
- c) In triangle PQR, QR = 5 cm and $< QPR = 60^{\circ}$

Calculate the radius of the circumcircle of the triangle.

(5 marks)

- d) The perimeter of a triangle fields is 120m. Two of the sides are 21m and 40 m. Calculate the largest angle of the fields (5 marks)
- e) Without using mathematical tables or electron calculators and leaving your answer in the surd form where necessary, obtain:

i. $\cos{(-180^{\circ})}$

(1 mark)

ii. $Sin (540^{\circ})$

(1 mark)

iii. Tan (135⁰)

(1 mark)

QUESTION FOUR (20 MARKS)

- a) A chord 12cm long is on a circle of radius 10cm. Find the distance of the chord from the centre of the circle. (4 marks)
- b) Find the perimeter of a semi-circle protractor whose radius is 14 cm. (3 marks)
- c) The wiper of a bus is 40 cm long. It sweeps out through an angle of 120^{0} non a flat windscreen. Calculate the distance moved by the tip of the wiper in one sweep.

- d) The figure below shows a circle ABCD in which chord AB and CD are equal. Show that:
 - i. AD = BC

ii. AC is parallel to BD

e) In the figure below find x and y

(4 marks)

QUESTION FIVE (20 MARKS)

- a) Find the equation of the circle whose centre is at the point (2,1) and which passes through the point (4,-3) (4 marks)
- b) Find the equation of the straight line which passes through the point (2,-1) and parallel to the line 3x+5y=1 (3 marks)
- c) Solve the following pair of simultaneous equations graphically.

$$4x-3y=12$$

 $x - 2y - 2$

$$X = 2y = 2 (4 marks)$$

- d) Find the gradient of the line joining R (4,8) and S (5, -2) (2 marks)
- e) Find the equation of the straight line joining the points (-5,2), and (3,-4)(2 marks)
- f) Prove that the four points (4,0),(7,-3),(-2,-2),(-5,1) are the vertices of a parallelogram and find the equation of the diagonals (5 marks)