

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 111

COURSE TITLE: VECTORS \& GEOMETRY
STREAM:
Y1S1

DAY:

TIME:

DATE:
07/12/2010

INSTRUCTIONS:
1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO Questions

Question One [30 Marks]

a) Given that $\underline{r_{1}}=2 i-\hat{j}+\hat{k}, \underline{r_{2}}=\hat{i}+3 \hat{j}-2 \hat{k}, \underline{r_{3}}=-2 \hat{i}+\hat{j}-3 \hat{k}$ and $\underline{r_{4}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ find the magnitude of $2 r_{1}-3 r_{2}-5 r_{3}$
b) Show that the magnitude of the vector $\vec{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}$ is given by

$$
\begin{equation*}
|\vec{A}|=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}} \tag{3Marks}
\end{equation*}
$$

c) Given that the wind is blowing at 12 miles/ hour in the direction $\mathrm{N} 40^{\circ} \mathrm{W}$, express its velocity as a vector.
d) Find a vector \underline{b} in the opposite direction of $\underline{a}=\langle 5,-12\rangle$ that has magnitude 6
[3 Marks]
e) Determine a unit vector that is perpendicular to the plane of $\vec{A}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\vec{B}=4 \hat{i}+3 \hat{j}-\hat{k}$.
f) Show that the pair of vectors are orthogonal $\underline{p}=2 \hat{i}+a \hat{j}+4 \hat{k}$ and $\underline{q}=5 \hat{i}+2 \hat{j}-4 \hat{k}$
[2 Marks]
g) Find the vector product of \underline{p} and \underline{q} where $\underline{p}=3 \hat{i}-4 \hat{j}+2 \hat{k}$ and $\underline{q}=2 \hat{i}+5 \hat{j}-\hat{k}$
[6 Marks]
h) Find the angle between the vectors $\underline{a}=2 \hat{i}+3 \hat{j}$ and $\underline{b}=5 \hat{i}+\hat{j}$
[4 Marks]

Question Two [20 Marks]

a) Prove the law of sines for triangles.
b) An automobile travels 3 km due north then 5 km northeast. Represent these displacements graphically and hence or otherwise determine the resultant displacement.
[4 marks]
c) AT noon two boats P and Q are at points where position vectors are $4 \hat{i}+8 \hat{j}$ and $4 \hat{i}+3 \hat{j}$ respectively. Both boats are moving with a constant velocity; the velocity of P is $4 \hat{i}+\hat{j}$ and the velocity of Q is $2 \hat{i}+5 \hat{j}$ where all distances are in kilometers and time measured in hours.
i) Find the position vectors of P and Q and $\overrightarrow{P Q}$ after t hours. [4 Marks]
ii) Express the distance PQ between the boats in terms of t
iii) Show that the least distance between the boats is $\sqrt{5} \mathrm{~km}$

Question Three [20 Marks]

a) Given the midpoints of the consecutives sides of any quadrilateral are connected by straight lines prove that the resulting quadrilateral is a parallelogram [2 Marks]
b) Given that A and B are the points $(1,1,1)$ and $(13,4,5)$ respectively, i. Find in terms of \hat{i}, \hat{j} and \hat{k} the displacement vector $\overrightarrow{A B}$ [2 Marks]
ii. Find the unit vector parallel to $\overrightarrow{A B}$
[4 Marks]
iii. Find the point P on $\overrightarrow{A B}$ such that $\mathrm{AP}: \mathrm{PB}=1: 3$
[4 Marks]
c) A small cart weighing 100 kg is pushed up an incline that makes an angle of 30° with the horizontal. Find the work done against the gravity in pushing the cart a distance of 80 metres
[6 marks]

Question Four [20 Marks]

a) Determine the angles α, β, and γ which the vector $\underline{r}=x \hat{i}+y \hat{j}+z \hat{k}$ makes with the positive directions of the coordinate axis and hence show that

$$
\begin{equation*}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \tag{5Marks}
\end{equation*}
$$

b) Show that $\underline{a} \bullet \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ given that $\underline{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\underline{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
[4 Marks]
c) Given that A, B and C are the points $(1,1,1),(5,0,0)$ and $(3,2,1)$ respectively find the equation which must be satisfied by the coordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of any point P in the plane ABC .
[6 Marks]
d) Find the equation of the line of intersection given that the equation of two nonparallel planes as $2 x-3 y+z=3$ and $3 x-5 y+z=8$

Question Five [20 Marks]

a) Show that $A \times B \times C=B(A \bullet C)-C(A \bullet B)$
b) Given that $\underline{a}=4 \hat{i}+3 \hat{j}+12 \hat{k}$ and $\underline{b}=8 \hat{i}-6 \hat{j}$ find
i. $\quad \underline{a} \bullet \underline{b}$
[2 Marks]
ii. The angle between the two vectors \underline{a} and \underline{b}
c) Find an equation for the plane perpendicular to the vector $\underline{a}=2 \hat{i}+3 \hat{j}+16 \hat{k}$ and passing through the terminal point of the vector $\underline{b}=\hat{i}+5 \hat{j}+13 \hat{k}$. Hence find the distance from the origin to the plane.
d) Determine a unit vector perpendicular to the plane of $\underline{p}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\underline{q}=4 \hat{i}+3 \hat{j}-\hat{k}$

