

STREAM: Y2S1 \& Y2S2
DAY:
WEDNESDAY
TIME:
9.00-11.00 A.M.

DATE:
16/03/2011

INSTRUCTIONS:

- Answer question ONE and any other TWO questions
- Begin each question on a separate page
- Show your workings clearly

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{lll}-1 & 0 & 1 \\ 1 & 2 & 3\end{array}\right]$

Find i) $A+B$
(2 marks)
ii) $B+A$
(2 marks)
iii) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
b) Find the angle between the vectors

$$
\mathrm{a}=\mathrm{i}+2 \mathrm{j}+3 \mathrm{k} \quad \text { and } \mathrm{b}=\mathrm{i}-\mathrm{j}+2 \mathrm{k}
$$

(4 marks)
c) Solve for x from the following

$$
\left|\begin{array}{lll}
x+1 & 3 & 5 \tag{5marks}\\
2 & x+2 & 5 \\
2 & 3 & x+4
\end{array}\right|=0
$$

d) Find the rank of the following matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & -3 & 1 \\
1 & 3 & 4 & 2 \\
2 & 5 & 1 & 3
\end{array}\right]
$$

e) Show that $\mathrm{u}=(12,0,4,0,16,-4)$ and $\mathrm{v}=(-8,20,0,8,-12,-72)$ are orthogonal and verify that the pythagorean theorem holds
f) Given that $u=(-6,9,3,-3)$ and $v=(21,3,-12,-6)$ verify the cauchy-schwarz inequality and the triangle inequality

QUESTION TWO (20 MARKS)

Find the inverse of the following matrix using row reduction method

$$
A=\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]
$$

QUESTION THREE (20 MARKS)

a) Suppose that $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)$ are two vectors in three space show that

$$
x . y=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

b) Find the determinat of the following

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

c) If $\mathrm{a}=2 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$ and $\mathrm{b}=10 \mathrm{i}-2 \mathrm{j}+7 \mathrm{k}$. Find $\mathrm{a} x \mathrm{~b}, \mathrm{~b} \times \mathrm{a}$ and also find the unit vector perpendicular to both.

QUESTION FOUR (20 MARKS)

a) Find the sine of the angle between the vectors $3 i+j+2 k$ and $2 i-2 j+4 k \quad$ (7 marks)
b) If $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 3 & \begin{array}{l}4 \\ 4\end{array} \\ 5 & 6\end{array}\right]$ and $\mathrm{k}_{1}=\mathrm{i}, \mathrm{k}_{2}=2$

$$
\text { Verify }\left(k_{1}+k_{2}\right) A=k_{1} A+k_{2} A
$$

c) Given $\mathrm{u}=(5,2), \mathrm{v}=(0,7)$ and $\mathrm{w}=(4,10)$ compute

$$
\text { i) u.u and }\|u\|^{2}
$$

(3 marks)
ii) u.w
(2 marks)
iii) $(-2 u) . v$ and $u .(-2 v)$

QUESTION FIVE (20 MARKS)

a) Suppose that u and v are two vectors in \Re^{n} and that c is a scalar show that
i) $\|c u\|=|c|\|u\|$
(4 marks)
ii) $\|u+v\| \leq\|u\|+\|v\|$
(4 marks)
b)

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}+2 x_{3}=9 \\
& 3 x_{1}+2 x_{2}-x_{3}=4 \\
& x_{1}-4 x_{2}+2 x_{3}=6
\end{aligned}
$$

Use Gaussian elimination and Gauss-Jordan elimination methods to solve the above system of equations

