COURSE CODE: MATH 211COURSE TITLE: LINEAR ALGEBRA I
STREAM: Y2S1
DAY: WEDNESDAY
TIME:9.00 - 11.00 A.M.
DATE:09/12/2009

INSTRUCTIONS:

- Answer question ONE and any other TWO questions
- Begin each question on a separate page
- Show your workings clearly

QUESTION ONE (30 MARKS)

a) Define null space
b) Determine the null space of the following matrices
i) $\left[\begin{array}{cc}2 & 0 \\ -4 & 10\end{array}\right]$ (4 marks)
ii) $\left[\begin{array}{lc}1 & -7 \\ -3 & 21\end{array}\right]$
(4 marks)
c) Evaluate each of the following for the given matrix

$$
A=\left(\begin{array}{ll}
-7 & 3 \\
5 & 1
\end{array}\right)
$$

i) $\quad \mathrm{A}^{2} \quad(\mathbf{3}$ marks $)$
ii) $p(A)$ where $p(x)=-6 x^{3}+10 x-9 \quad(5$ marks $)$
d) Given the following vectors compute the indicated quantity

$$
\mathbf{a}=(4,-6) \mathbf{b}=(-3,-7) \mathbf{c}=(-1,5) \mathbf{u}=(1,-2,6) \mathbf{v}=(0,4,-1) \mathbf{w}=(9,2,-3)
$$

i) $\quad-\mathbf{w}$
ii) $\mathbf{a}+\mathbf{b}$
(2 marks)
iii) a-c
e) Determine if the given set is a subspace of the given vector space
i) Let W be the set of all points, (x, y), from R^{2} in which $x \geq 0$. Is this a subspace of R^{2}
ii) Let W be the set of all points, $\left(0, x_{1}, x_{2}\right)$, from R^{3} in which $x \geq 0$. Is this a subspace of R^{3}

QUESTION TWO (20 MARKS)

a) Determine the angle between the following vectors
i) $\quad \mathbf{a}=(9,-2)$ and $\mathbf{b}=(4,18)$
ii) $\quad \mathbf{u}=(\mathbf{3},-1,6) \quad \mathbf{v}=(\mathbf{4 , 2 , 0})$
(5 marks)
b) Solve the following system of equation using cramer's rule

$$
\begin{aligned}
& -2 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=4 \\
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=13 \\
& 3 \mathrm{x}_{1}+\mathrm{x}_{3} \quad=-1
\end{aligned}
$$

QUESTION THREE (20 MARKS)

a) Solve the following using row-operations method

$$
\begin{align*}
& 2 x+y=800 \\
& x+3 y=1150 \tag{10marks}
\end{align*}
$$

b) Determine if each of the following sets of vectors are linearly independent or linearly dependent
i) $\quad \mathrm{v}_{1}=(3,1)$ and $\mathrm{v}_{2}=(-2,2)$
(5 marks)
ii) $\quad \mathrm{v}_{1}=(12,-8)$ and $\mathrm{v}_{2}=(-9,6)$

QUESTION FOUR (20 MARKS)

Compute the inverse of the following matrix using the determinant method

$$
A=\left[\begin{array}{lll}
4 & 2 & 1 \\
-2 & -6 & 3 \\
-7 & 5 & 0
\end{array}\right]
$$

QUESTION FIVE (20 MARKS)

a) Determine if each of the sets of vectors will be a basis for R^{3}
i) \quad v $1=(1,-1,1)$ v2 $=(0,1,2)$ and $v 3=(3,0,-1)$
ii) $\quad \mathrm{v} 1=(1,0,0)$ v2 $=(0,1,0)$ and $\mathrm{v} 3=(0,0,1)$
b) Given $u=(3,-1,4)$ and $v=(2,0,1)$ compute each of the following
i) uxv and vxu
ii) uxu

