KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I

STREAM: Y2S2

DAY: WEDNESDAY

TIME: 9.00 – 11.00 A.M.

DATE: 24/03/2010

INSTRUCTIONS:

- 1. Answer question ONE and any other TWO questions
- 2. Begin each question on a separate page
- 3. Show your workings clearly and neatly.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) Find the determinant of A=
$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 3 \\ 2 & 1 & -4 \end{pmatrix}$$
 (4 marks)
b) Compute the inverse of the following matrices using row reduction method
i) $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ (3 marks) ii) $\begin{pmatrix} 2 & -3 \\ 4 & 4 \end{pmatrix}$ (3 marks)
c) Given v = (3,-1,-2) find the a unit vector that,
i) Points in the same direction as v (3 marks)
ii) Points in the opposite direction as v (2 marks)
d) Find the angle between the vectors p = 2i + 3j + 4k and q = 4i - 3j + 2k (5 marks)
e) Determine if the following sets of vectors will span R³

i) $V_1 = (2,0,1)$, $v_2 = (-1,3,4)$ and $v_3 = (1,1,-2)$ (5 marks)

ii)
$$V2 = (1,2,-1), v2 = (3,-1,1) and v3 = (-3,8,-5)$$
 (5 marks)

QUESTION TWO (20 MARKS)

a) Given u=(3,-1,4) and v=(2,0,1) compute each of the following

i)	u x v and v x u	(6 marks)
ii)	u x u	(2 marks)
iii)	u.(u x v) and v.(u x v)	(4 marks)
• 、		<i></i>

iv) Angle between u and v (4 marks)

b) Find the rank of the following matrix

(1	2	3	
4	5	6	(4 marks)
2	1	0)	

QUESTION THREE (20 MARKS)

- a) Given u = (-2,3,1,-1) and v = (7,1,-4,-2) verify the cauchy-schwarz inequality and the triangular inequality (6 marks)
- b) Determine if the following sets of vectors are linearly independent or linearly dependent i) $V_1 = (1,1,-1,2)$, $v_2 = (2,-2,0,2)$ and $v_3 = (2,-8,3,-1)$ (5 marks)

ii)
$$v_1 = (1, -2, 3, -4)$$
, $v_2 = (-1, 3, 4, 2)$ and $v_3 = (1, 1, -2, -2)$ (5 marks)

c) Show that $(A^n)(A^{-1}) = I$

(4 marks)

QUESTION FOUR (20 MARKS)

- a) Suppose that $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are two vectors in 3- space then, Show that $u.v = u_1v_1 + u_2v_2 + u_3v_3$ (7 marks)
- b) Solve the following systems of equations using cramers rule 4x + 2y + 4z = 16 2x - 6y + 6z = -8 (7 marks) 8x + 4y - 2z = 2

c) Evaluate each of the following if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ i) A^2 (3 marks) ii) A^3 (3 marks)

QUESTION FIVE (20 MARKS)

a) For the following matrices compute

$$A = \begin{pmatrix} 10 & -6 \\ -3 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 5 & -6 \end{pmatrix}$$

i) Det(A) (3 marks)
ii) Det(B) (3 marks)
iii) Det(AB) (3 marks)
iv) Det A⁻¹ (2 marks)

b) Show that u = (3,0,1,0,4,-1) and v = (-2,5,0,2,-3,-18) are orthogonal and verify that the pythagorean Theorem holds (8 marks)