FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211
COURSE TITLE: LINEAR ALGEBRA I
STREAM: Y2S1
DAY:
WEDNESDAY
TIME:
$9.00-11.00 \mathrm{P} . \mathrm{M}$

DATE:
08/12/2010

INSTRUCTIONS:
1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE (30 MARKS)

a) Clearly explain the solution to a linear equation and hence find the solution to the equation $x_{1}-x_{2}+x_{3}=9$
b) Solve the following system of equation by row-reduction

$$
\begin{array}{r}
2 x+y=3 \\
x-4 y=-7
\end{array}
$$

c) Given the matrices $\mathrm{A}=\left[\begin{array}{ll}0 & 9 \\ 2 & -3 \\ -1 & 1\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}8 & 1 \\ -7 & 0 \\ 4 & -1\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ll}2 & 3 \\ -2 & 5 \\ 10 & -6\end{array}\right]$

Compute $3 \mathrm{~A}+2 \mathrm{~B}-1 / 2 \mathrm{C}$
d) Determine the angle between the following vectors $\mathbf{a}=(9,-2)$ and $\mathbf{b}=(4,18)$
e) An isosceles triangle has vertices $P(2,3,5) Q(-1,0,-2) R(-4,1, z)$ Find the value of z .
f) Show that the vectors $\underline{u}=(1,2,3), \underline{v}=(2,5,7)$ and $\underline{w}=(1,3,5)$ are linearly independent.
g) Find the Eigen values of $A=\left[\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right]$

QUESTION TWO (20 MARKS)

a) State the conditions necessary for a matrix to be in a canonical form
b) Find the rank of the matrix

$$
B=\left[\begin{array}{cccc}
9 & 3 & 1 & 0 \\
3 & 0 & 1 & -6 \\
1 & 1 & 1 & 1 \\
0 & -6 & 1 & 9
\end{array}\right]
$$

c) Show that the vectors $\underline{v_{1}}=2 a-3 b+c, \underline{v_{2}}=3 a-5 b+2 c$ and $\underline{v_{3}}=4 a-5 b+c$ are linearly dependent where a, b and c are constants.
d) Compute the inverse of the following matrix using the Gauss Jordan elimination method

$$
A=\left[\begin{array}{lll}
4 & 2 & 1 \\
-2 & -6 & 3 \\
-7 & 5 & 0
\end{array}\right]
$$

QUESTION THREE (20 MARKS)

a) Suppose that $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ and $\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$ are two vectors in 3- space show that $\underline{u} \bullet \underline{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
b) Calculate the scalar triple product of the vectors $\underline{u}=(3,-1,6), \underline{v}=(2,4,3)$ and $\underline{w}=(5,-1,2)$
c) Show that $u=(3,0,1,0,4,-1)$ and $v=(-2,5,0,2,-3,-18)$ are orthogonal and verify that the Pythagorean Theorem holds
d) Evaluate A^{3} given that $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ (3 marks)

QUESTION FOUR (20 MARKS)

a) Show that the following vectors lie on the same plane $\underline{u}=(1,4,-7), \underline{v}=(2,-1,4)$ and $\underline{w}=(0,-9,18)$
b) Given $\mathbf{u}=(6,-2,8)$ and $\mathbf{v}=(4,0,2)$ compute $\mathbf{u} \times \mathbf{v}$ each of the following (5 marks)
c) Find the angle between the vectors $p=4 i+6 j+8 k$ and $q=8 i-6 j+4 k \quad$ (5 marks)

QUESTION FIVE (20 MARKS)

a) Solve the following system of equation using Cramer's rule

$$
\begin{aligned}
& -2 x_{1}+x_{2}-x_{3}=4 \\
& x_{1}+2 x_{2}+3 x_{3}=13 \\
& 3 x_{1}+x_{3}=-1
\end{aligned}
$$

b) Find the Eigen values and the corresponding Eigen vectors of the matrix

$$
B=\left[\begin{array}{cc}
3 & 2 \\
3 & -2
\end{array}\right]
$$

