UNIVERSITY EXAMINATIONS
 2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I

STREAM:
 SESSION I

DAY:
THURSDAY

TIME:
2.00 - 4.00 P.M.

DATE:
26/11/2009

INSTRUCTIONS:

1. Answer question ONE and any other TWO questions
2. Begin each question on a separate page
3. Show your working clearly

QUESTION ONE (30 MARKS)

a) Solve the following system of equation by row-reduction

$$
\begin{array}{r}
2 x+y=3 \\
x-4 y=-7 \tag{8marks}
\end{array}
$$

b) Given the matrices $\mathrm{A}=\left[\begin{array}{ll}0 & 9 \\ 2 & -3 \\ -1 & 1\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}8 & 1 \\ -7 & 0 \\ 4 & -1\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ll}2 & 3 \\ -2 & 5 \\ 10 & -6\end{array}\right]$

Compute $3 \mathrm{~A}+2 \mathrm{~B}-1 / 2 \mathrm{C}$
c) Determine the angle between the following vectors
i) $\quad \mathbf{a}=(9,-2)$ and $\mathbf{b}=(4,18)$
ii) $\quad \mathbf{u}=(\mathbf{3 , - 1 , 6}) \quad \mathbf{v}=(\mathbf{4 , 2 , 0})$
d) Determine if the given set is a subspace of the given vector space
i) Let W be the set of all points, (x, y), from R^{2} in which $x \geq 0$. Is this a subspace of R^{2}
ii) Let W be the set of all points, $\left(0, x_{1}, x_{2}\right)$, from R^{3} in which $x \geq 0$. Is this a subspace of R^{3}

QUESTION TWO (20 MARKS)

a) Compute the inverse of the following matrix using the determinant method

$$
A=\left[\begin{array}{lll}
4 & 2 & 1 \tag{15marks}\\
-2 & -6 & 3 \\
-7 & 5 & 0
\end{array}\right]
$$

b) Compute the norms of the given vectors
i) $v=(-5,3,9)$
ii) $\mathrm{j}=(0,1,0)$

QUESTION THREE (20 MARKS)

a) Suppose that the set V is the set of positive real numbers(i.e $\mathrm{x}>0$) with addition and scalar multiplication defined as follows, $x+y=x y$ and $c x=x^{c}$

Show that this set under this addition and scalar multication is a vector space
b) For the following matrices perform the indicated operation, if possible
$\mathrm{A}=\left[\begin{array}{llll}2 & 0 & -3 & 2 \\ -1 & 8 & 10 & -5\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{llll}0 & -4 & -7 & 2 \\ 12 & 3 & 7 & 9\end{array}\right]$
i) $\mathrm{A}+\mathrm{B}(3$ marks $)$
ii) $\mathrm{B}-\mathrm{A}(3$ marks $)$

QUESTION FOUR (20 MARKS)

a) Use Gaussian Elimination and Gauss-Jordan Elimination to solve the following system of linear equations.

$$
\begin{align*}
-2 x_{1}+x_{2}-x_{3} & =4 \\
x_{1}+2 x_{2}+3 x_{3} & =13 \tag{12marks}\\
3 x_{1}+x_{3} & =-1
\end{align*}
$$

b) Determine if each of the following sets of vectors are linearly independent or linearly dependent

$$
\text { i) } \quad \mathrm{v}_{1}=(3,1) \text { and } \mathrm{v}_{2}=(-2,2)
$$

(4 marks)
ii) $\quad \mathrm{v}_{1}=(12,-8)$ and $\mathrm{v}_{2}=(-9,6)$
(4 marks)

QUESTION FIVE (20 MARKS)

a) Solve the following system of equation using cramer's rule

$$
\begin{aligned}
& -2 x_{1}+x_{2}-x_{3}=4 \\
& x_{1}+2 x_{2}+3 x_{3}=13 \\
& 3 x_{1}+x_{3}=-1
\end{aligned}
$$

(10 marks)
c) Determine a basis and dimension for the null space of

$$
\mathrm{A}=\left[\begin{array}{lllll}
7 & 2 & -2 & -4 & 3 \tag{10marks}\\
-3 & -3 & 0 & 2 & 1 \\
4 & -1 & -8 & 0 & 20
\end{array}\right]
$$

