KABARAK

UNIVERSITY

SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- **COURSE CODE:** MATH 211
- **COURSE TITLE:** LINEAR ALGEBRA I
- **STREAM:** SESSION II
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 17/03/2009

INSTRUCTIONS TO CANDIDATES:

Answer questions **ONE** (compulsory) and any other **TWO**.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

- (a) Explain what is meant by a set of vectors being linear dependent. (3 mks)
- (b) Show whether the following vectors form a basis for

(c) Derive the triangle inequality

$$|u+v| \subseteq |u|+|v| \tag{8 mks}$$

- (d) Find the angle between U = (-1, 3, 4) and V = (-2, -1, 3) (3 mks)
- (e) Consider the matrix equation

-1	3	2]			[-2]
0	1	1	<i>x</i> ₂	=	0
2	-2	0	<i>x</i> ₃		$\begin{bmatrix} -2\\0\\b \end{bmatrix}$

For what values of b does a solution exist? What is the solution?

QUESTION TWO (20 MARKS)

(a) (i) Given H and K as vector subspaces of a vector space V, show that HZ K is a vector subspace of V. (4mks)

(8mks)

- (ii) Let H = $\{(x, y, z) | 2x y z = 0\}$ and K = $\{(x, y, z) | x + 2y + 3z = 0\}$ be vector subspaces of R³. Find H Z K and determine whether it is a subspace of R³. (7mks)
- (b) (i) Let $V = \{v_1, v_2, --, v_n\}$ be a vector space in \mathbb{R}^3 . Explain clearly what is meant by V is linearly dependent. (2mks)
 - (ii) Determine whether or not the set $V = \{(1,0,2,3), (4,0,5,6), (7,0,8,9)\}$ in \mathbb{R}^4 is linearly independent. If not, find a linear combination that equals 0. (zero). (7mks)

QUESTION THREE (20 marks)

- (a) Find the general solution of the homogenous system of linear equations given below: $x_1 + 2x_2 + 3x_3 + x_4 + x_5 = 0$ $x_1 - x_2 - x_3 + x_4 - x_5 = 0$ $2x_1 + x_3 + x_5 = 0$ $3x_1 + x_2 + x_4 - 3x_5 = 0$ (10 marks)
- (b) Use Cramer's Rule to solve the non-homogenous system of linear equations; 2y + 2x = z + 1 3x + 2z = 8 - 5y3z - 1 = x - 2y (10 marks)

QUESTION FOUR (20 MARKS)

(a) Let V and W be two vector spaces. Define a linear transformation from V into W.

(3mks)

(b) A linear transformation T: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ is defined by

 $T\left(\begin{bmatrix} x\\ y\\ z \end{bmatrix}\right) = \begin{bmatrix} 2x & -y & +3z\\ 4x & -3y & +6z\\ -6x & +3y & -9z \end{bmatrix}$

Determine

(i)the standard matrix A that T represents(1mk)(ii)the rank of A(2mks)(iii)the range of A(3mks)(iv)the kernel of A(3mks)(v)the nullity of A(2mks)

(c) Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix} \text{ and } T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-4\\0\\5\end{bmatrix}$$

Find

(i)
$$T\begin{pmatrix} x \\ y \end{pmatrix}$$
 (4mks)
(ii) $T\begin{pmatrix} -3 \\ 7 \end{pmatrix}$ (2mks)

QUESTION FIVE (20 MARKS)

(a)	i) If \underline{u} and \underline{v} and two non-zero vectors in 3-space, then derive the orthogonal				
	projection of \underline{u} on \underline{v} and the component of \underline{u} orthogonal to \underline{v} .	(3 marks)			
	(ii) If $u = (3,-4,2)$ and $v = (2,1,-2)$ are two vectors in 3-space then find the	find the orthogonal			
	projection of \underline{u} on \underline{v} and the component of \underline{u} orthogonal to \underline{v} .	(8 marks)			
	(iii) From your results in (ii) confirm that \underline{w}_2 is perpendicular to \underline{v} .	(2 marks)			
(b)	From the vectors \underline{u} and \underline{v} given in (a) (ii), find $\underline{u} \ge \underline{v}$ (1 marks)				
(c)	Show that the cross product $\underline{u} \ge \underline{v}$ is orthogonal to each vector \underline{u} and \underline{v} .	(2 marks)			

(d) If u, v, and w are vectors in the vector space \mathbb{R}^3 , then show that ; $(\underline{u} + \underline{v}) \times \underline{w} = (\underline{u} \times \underline{w}) + (\underline{v} \times \underline{w}).$ (4 marks)