

SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I
STREAM: SESSION II
DAY:
TUESDAY
TIME:
9.00-11.00 A.M.

DATE:
17/03/2009

INSTRUCTIONS TO CANDIDATES:
Answer questions ONE (compulsory) and any other TWO.

QUESTION ONE (30 MARKS)

(a) Explain what is meant by a set of vectors being linear dependent.
(b) Show whether the following vectors form a basis for

$$
\begin{aligned}
\mathrm{R}^{3}, \mathrm{~V}_{1} & =(3,1,-4) \\
\mathrm{V}_{2} & =(2,5,6) \\
\mathrm{V}_{3} & =(1,4,8)
\end{aligned}
$$

(c) Derive the triangle inequality

$$
\begin{equation*}
|u+v| \subseteq|u|+|v| \tag{8mks}
\end{equation*}
$$

(d) Find the angle between $\boldsymbol{U}=(-1,3,4)$ and $\boldsymbol{V}=(-2,-1,3)$
(e) Consider the matrix equation

$$
\left[\begin{array}{ccc}
-1 & 3 & 2 \\
0 & 1 & 1 \\
2 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
b
\end{array}\right]
$$

For what values of b does a solution exist? What is the solution?

QUESTION TWO (20 MARKS)

(a) (i) Given H and K as vector subspaces of a vector space V , show that HI K is a vector subspace of V.
(ii) Let $\mathrm{H}=\{(x, y, z) \mid 2 x-y-z=0\}$ and $\mathrm{K}=\{(x, y, z) \mid x+2 y+3 z=0\}$ be vector subspaces of R^{3}. Find HI K and determine whether it is a subspace of R^{3}.
(b) (i) Let $\mathrm{V}=\left\{v_{1}, v_{2},-, v_{n}\right\}$ be a vector space in R^{3}. Explain clearly what is meant by V is linearly dependent.
(ii) Determine whether or not the set $\mathrm{V}=\{(1,0,2,3),(4,0,5,6),(7,0,8,9)\}$ in R^{4} is linearly independent. If not, find a linear combination that equals 0 . (zero).

QUESTION THREE (20 marks)

(a) Find the general solution of the homogenous system of linear equations given below:-

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}+x_{4}+x_{5}=0 \\
& x_{1}-x_{2}-x_{3}+x_{4}-x_{5}=0 \\
& 2 x_{1}+x_{3}+x_{5}=0 \\
& 3 x_{1}+x_{2}+x_{4}-3 x_{5}=0
\end{aligned}
$$

(10 marks)
(b) Use Cramer's Rule to solve the non-homogenous system of linear equations;

$$
\begin{aligned}
& 2 y+2 x=z+1 \\
& 3 x+2 z=8-5 y \\
& 3 z-1=x-2 y
\end{aligned}
$$

QUESTION FOUR (20 MARKS)

(a) Let V and W be two vector spaces. Define a linear transformation from V into W.
(b) A linear transformation $\mathrm{T}: \mathrm{R}^{3} \rightarrow R^{3}$ is defined by
$\mathrm{T}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{ccc}2 x & -y & +3 z \\ 4 x & -3 y & +6 z \\ -6 x & +3 y & -9 z\end{array}\right]$
Determine
(i) the standard matrix A that T represents (1mk)
(ii) the rank of A
(iii) the range of A
(iv) the kernel of A
(v) the nullity of A
(c) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow R^{3}$ be a linear transformation such that

$$
\mathrm{T}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } \mathrm{T}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
0 \\
5
\end{array}\right]
$$

Find
(i)

$$
\mathrm{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

(4mks)
(ii) $\mathrm{T}\left(\left[\begin{array}{c}-3 \\ 7\end{array}\right]\right)$

QUESTION FIVE (20 MARKS)

(a) (i) If \underline{u} and \underline{v} and two non-zero vectors in 3-space, then derive the orthogonal projection of \underline{u} on \underline{v} and the component of \underline{u} orthogonal to \underline{v}.
(ii) If $u=(3,-4,2)$ and $v=(2,1,-2)$ are two vectors in 3 -space then find the orthogonal projection of \underline{u} on \underline{v} and the component of \underline{u} orthogonal to \underline{v}.
(iii) From your results in (ii) confirm that $\underline{\mathrm{w}}_{2}$ is perpendicular to \underline{v}.
(b) From the vectors \underline{u} and \underline{v} given in (a) (ii), find $\underline{u} \times \underline{v}$ (1 marks)
(c) Show that the cross product $\underline{\mathrm{u}} \mathrm{x} \underline{\mathrm{v}}$ is orthogonal to each vector $\underline{\mathrm{u}}$ and \underline{v}.
(d) If u, v, and w are vectors in the vector space R^{3}, then show that ; $(\underline{u}+\underline{v}) \times \underline{w}=(\underline{u} \times \underline{w})+(\underline{v} \times \underline{w})$.

