

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I

STREAM: SESSION I

DAY: WEDNESDAY

TIME: 9.00 - 11.00 A.M.

DATE: 11/08/2010

INSTRUCTIONS:

- Answer question ONE and any other TWO questions
- Begin each question on a separate page
- Show your workings clearly

PLEASE TURNOVER

QUESTION ONE (30 MARKS)

a) Find the determinant of A=
$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 3 \\ 2 & 1 & -4 \end{pmatrix}$$
 (4 marks)

- b) Compute the inverse of the following matrices using row reduction method
 - i) $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ (3 marks) ii) $\begin{pmatrix} 2 & -3 \\ 4 & 4 \end{pmatrix}$ (3 marks)
- c) Given $\mathbf{v} = (3,-1,-2)$ find the a unit vector that,
 - i) Points in the same direction as **v** (3 marks)
 - ii) Points in the opposite direction as v (2 marks)
- d) Find the angle between the vectors p = 2i + 3j + 4k and q = 4i 3j + 2k (5 marks)
- e) Determine if the following sets of vectors will span R³

i)
$$V_1 = (2,0,1)$$
, $v_2 = (-1,3,4)$ and $v_3 = (1,1,-2)$ (5 marks)

ii)
$$V2 = (1,2,-1)$$
, $v2 = (3,-1,1)$ and $v3 = (-3,8,-5)$ (5 marks)

QUESTION TWO (20 MARKS)

a) Given u=(3,-1,4) and v=(2,0,1) compute each of the following

iii)
$$u.(u \times v)$$
 and $v.(u \times v)$ (4 marks)

b) Find the rank of the following matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$
 (4 marks)

QUESTION THREE (20 MARKS)

- a) Given u = (-2,3,1,-1) and v = (7,1,-4,-2) verify the cauchy-schwarz inequality and the triangular inequality (6 marks)
- b) Determine if the following sets of vectors are linearly independent or linearly dependent i) $V_1 = (1,1,-1,2)$, $v_2 = (2,-2,0,2)$ and $v_3 = (2,-8,3,-1)$ (5 marks)

ii)
$$v_1 = (1, -2, 3, -4)$$
, $v_2 = (-1, 3, 4, 2)$ and $v_3 = (1, 1, -2, -2)$ (5 marks)

c) Show that
$$(A^n)(A^{-1}) = I$$
 (4 marks)

QUESTION FOUR (20 MARKS)

- a) Suppose that $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are two vectors in 3- space then, Show that $\mathbf{u}.\mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3$ (7 marks)
- b) Solve the following systems of equations using cramers rule

$$4x + 2y + 4z = 16$$

 $2x - 6y + 6z = -8$ (7 marks)
 $8x + 4y - 2z = 2$

- c) Evaluate each of the following if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 - i) A^2 (3 marks) ii) A^3 (3 marks)

QUESTION FIVE (20 MARKS)

- a) For the following matrices compute
 - i) Det(A) (3 marks)
 ii) Det(B) (3 marks)
 iii) Det(AB) (3 marks)
 iv) Det A⁻¹ (2 marks)
- b) Show that u = (3,0,1,0,4,-1) and v = (-2,5,0,2,-3,-18) are orthogonal and verify that the pythagorean Theorem holds (8 marks)