

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I
STREAM: SESSION I
DAY:
FRIDAY
TIME:
DATE:
26/11/2010

INSTRUCTIONS:

- Answer question ONE and any other TWO questions
- Begin each question on a separate page
- Show your workings clearly

QUESTION ONE (30 MARKS)

a) For the following matrices, find

$$
\begin{gathered}
A=\begin{array}{lll}
{\left[\begin{array}{lll}
2 & 2 & 4 \\
-3 & 0 & -1 \\
2 & 1 & 2
\end{array}\right]} & B=\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & -4 & 3 \\
-1 & 3 & 2
\end{array}\right] \\
& (2 \text { marks }) \\
\text { i) } & 3 \mathrm{~A} & (4 \text { marks })
\end{array}
\end{gathered}
$$

b) Find the inverse of the following matrix and show that ${A A^{-1}}^{-1} A^{-1} A=I$

$$
A=\left[\begin{array}{ll}
1 & 4 \tag{7marks}\\
-1 & -3
\end{array}\right]
$$

c) Given $\mathbf{u}=(12,-4,16)$ and $\mathbf{v}=(8,0,4)$ compute each of the following

$\mathbf{u x} \mathbf{v}$ and $\mathbf{v x u}$ (7 marks)

d) Find the angle between the vectors $p=12 i+18 j+24 k$ and $q=24 i-12 j+12 k(6$ marks $)$
e) Let A be an invertible matrix. Show that $\operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{\operatorname{det}(A)} \quad$ (4 marks)

QUESTION TWO (20 MARKS)

Using Gaussian Elimination and proceeding using Gauss Jordan Elimination, solve the following system of equations

$$
\begin{aligned}
& x-2 y+3 z=9 \\
& -x+3 y=-4 \\
& 2 x-5 y+5 z=17
\end{aligned}
$$

QUESTION THREE (20 MARKS)

a) Determine if the following sets of vectors will span R^{3}
i) $\quad \mathrm{V}_{1}=(2,0,1), \mathrm{v}_{2}=(-1,3,4)$ and $\mathrm{v}_{3}=(1,1,-2) \quad$ (4 marks)
ii) $\quad \mathrm{V}_{1}=(1,2,-1), \mathrm{v}_{2}=(3,-1,1)$ and $\mathrm{v}_{3}=(-3,8,-5) \quad$ (4 marks)
b) Find the rank of $A=\left[\begin{array}{lll}3 & 9 & 2 \\ 1 & 5 & 6 \\ 2 & 7 & 4\end{array}\right]$
c) Given $u=(-4,6,2,-2)$ and $v=(14,2,-8,-4)$ verify the cauchy-schwarz inequality and the triangular inequality

QUESTION FOUR(20 MARKS)

a) Given $u=(9,-3,12)$ and $v=(6,0,3)$ compute each of the following
i) $\quad u x v$ and $v x u$ (5 marks)
ii) $\quad \mathrm{uxu}^{\mathrm{u}}$
(2 marks)
iii) $u .(u \times v)$ and $v .(u \times v)$
(4 marks)
iv) Angle between u and v
(4 marks)
b) Determine if the following sets of vectors are linearly independent or linearly dependent

$$
\begin{equation*}
\mathrm{V}_{1}=(2,2,-2,4), \mathrm{v}_{2}=(4,-4,0,4) \text { and } \mathrm{v}_{3}=(4,-16,6,-2) \tag{4marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

Find the inverse of the following matrix using determinant method

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}-x_{3}=4 \\
& 2 x_{1}-x_{2}+2 x_{3}=10 \\
& x_{1}-3 x_{2}-4 x_{3}=5
\end{aligned}
$$

