UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA ONE
STREAM: SESSION IV
DAY: SATURDAY
TIME: $\quad 11.00 \mathbf{- 1 . 0 0}$ P.M.
DATE: 29/11/08

INSTRUCTIONS TO CANDIDATES:

1. Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Find the determinants of the following matrices:
(i) $\left[\begin{array}{cc}6 & -4 \\ -3 & 2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 0 & 3 \\ 2 & 1 & -4\end{array}\right]$
(5 mks)
(b) Solve the following system of equations using row reduction method

$$
\begin{aligned}
& x+y-z=7 \\
& 4 x-y-5 z=4 \\
& 2 x+2 y-3 z=0
\end{aligned}
$$

(c) Consider the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
0 & 1 & 1 \\
2 & -2 & 0
\end{array}\right]
$$

i) Find the nullspace of A :
ii) Write the general solution of the equation $A x=\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]$ in the form of a particular solution plus an arbitrary member of
the nullspce of A.
(d) (i) Determine the angle between the vectors

$$
\begin{equation*}
a=2 \mathrm{i}-\mathrm{j}+6 \mathrm{k} \text { and } \mathrm{b}=3 \mathrm{i}+2 \mathrm{j}+\mathrm{k} \tag{4mks}
\end{equation*}
$$

(ii) L et $\mathrm{T}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ be linear transformation such that

$$
\mathrm{T}\left[\begin{array}{l}
1 \tag{4mks}\\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
0 \\
5
\end{array}\right] \text {, find }\left[\frac{x}{y}\right]
$$

(e) (i) Given $\underline{\mathrm{a}}=3 \underline{\mathrm{i}}+2 \mathrm{j}+4 \underline{\mathrm{k}}$ and $\underline{\mathrm{b}}=-2 \underline{\mathrm{i}}+4 \mathrm{j}-\underline{\mathrm{k}}$, determine $\underline{\mathrm{a}} \times \underline{\mathrm{b}}$
(ii) Determine the value of λ for which the vectors $\mathrm{a}=4 \lambda \mathrm{i}+\lambda j-\mathrm{k}$ and

$$
\begin{equation*}
\mathrm{b}=\lambda \mathrm{i}+2 \mathrm{j}+2 \mathrm{k} \text { are orthogonal } \tag{3mks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

(a) State and prove the Schwarz inequality
(10 mks)
(b) The planes $x+2 y+3 z=2$ and $2 x+3 y+2 z=4$ intersect along line L. Find the parametric equation of L and state its direction vector
(c) Assume that P is a particular solution to the matrix equation $\mathrm{Ax}=\mathrm{b}$ and let N be the nullspace of A. Show that the entire solution set to this equation is $(\mathrm{P}+\mathrm{n}: \mathrm{n} E N)$.
(5 mks)

QUESTION THREE (20 MKS)

(a) Consider a line whose equation is $\mathrm{y}=3 \mathrm{x}+2$. Investigate if this line is a vector space
(7 mks)
(b) Let $\mathrm{H}=\{(x, y, z)\} 2 \mathrm{x}-\mathrm{y}-z=0\}$ and of $\mathrm{K}=\{(x, y, z), / x+2 y+3 z=0\}$ be subspaces of \mathfrak{R}^{3}. Find HI K and determine whether it is a subspace of \mathfrak{R}^{3}
(10 mks)
(c) Define the term nullspace.
(3 mks)

QUESTION FOUR (20 MKS)

(a) Given $\mathrm{V}_{1}=(1,4,6), \mathrm{V}_{2}=(1,-1,1)$ and $\mathrm{V}_{3}=(-1,5,3)$,

Determine if $(7,4,2)$ is in $\operatorname{Sp}\left(v_{1}, v_{2}, v_{3}\right)$
(5 mks)
(b) A linear mapping $\mathrm{T}: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3}$ is defined by

$$
\mathrm{T}(|x, y, z|)=[2 x+3 z, 3 y+2 z, 2 x+5 y]
$$

(i) Find a matrix M_{T} that represents T with respect to the standard ordered basis for \mathfrak{R}^{3}
(ii) Define the vector a if a is in the Kernel of T .
(iii) Determine the vectors which span the range of T .

QUESTION FIVE (20 MARKS)

(a) When are vectors $\mathrm{V}_{1}, \mathrm{~V}_{2},----\mathrm{V}_{\mathrm{n}}$ said to be linearly dependent?
(b) Consider the subspace S of \mathfrak{R}^{3} given by $S=\operatorname{sp}\{(2,1,3),(-1,2,0),(1,8,6)\}$

Use the casting technique to find a basis for S
(c) Find the dimension of the nullspace of

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

