

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I
STREAM: SESSION III
DAY:
MONDAY
TIME:
2.00 - 4.00 P.M.

DATE:
06/04/2009

INSTRUCTIONS:

Answer question ONE and any other TWO Questions.

QUESTION ONE (30 MARKS)

(a) (i) Given $\underline{a}=3 \underline{i}+2 \underline{j}+4 \mathrm{k}$ and $\underline{b}=-2 \underline{i}+4 \underline{j}-\underline{k}$, determine $\underline{a} \times \underline{b}$
(3 mks)
(ii) Determine the value of λ for which the vectors $\underline{a}=4 \lambda \underline{i}+\lambda \underline{j}-\underline{k}$ and $\underline{b}=\lambda \underline{i}+2 \underline{j}+2 \underline{k}$ are orthogonal.
(b) (i) Find a linear transformation T for \mathfrak{R}^{2} into the plane
$\mathrm{W}=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): 2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=0\right\}$
(6 mks)
(ii) What is meant by T being linear?
(2 mks)
(c) Write reduced row echelon form of the system of equations below and hence determine the solution of the system.
(4 mks)

$$
\begin{gathered}
x+y-z=7 \\
4 x-y-5 z=4 \\
2 x+2 y-3 z=0
\end{gathered}
$$

d) Let $\mathrm{W}=\left\{w_{1}, w_{2},-, w_{n}\right\}$ be a non empty subset of the vector space $\mathfrak{R}^{\mathrm{n}}$.

Explain clearly what is meant by
(i) $\quad \mathrm{W}$ is a subspace of $\mathfrak{R}^{\mathrm{n}}$
(2 mks)
(ii) $\quad \mathrm{W}$ is a basis for $\mathfrak{R}^{\mathrm{n}}$
(2 mks)
e) (i) Derive the formula for the area of a parallelogram whose adjacent sides are $|\underline{u}|$ and $|\underline{v}|$
(ii) If \underline{u} and \underline{v} are non zero vectors in \Re^{n}. Show that $|\underline{u}|+|\underline{v}| \leq|\underline{u}|+|\underline{v}|$
(4 mks)

QUESTION TWO (20 MKS)

(a) Given that V and W are two vector subspaces of a vector space U over a field F
(i) Prove that VI W is a vector subspace of U
(ii) If $V=\{(x, y, z): x+y-3 z=0\}$ and $W=\{(x, y, z): 2 x+y+z=0\}$ determine the subspace VI W and find a vector S which spans this subspace.
(4 mks)
(b) Let W be the subspace of \mathfrak{R}^{4} spanned by the set $\mathrm{U}=$ $\{(1,2,1,1),(0,1,-1,1),(1,0,2,3),(1,-1,2,6)\}$
(i) Determine whether U is a linearly independent set of not.
(ii) Find a subject of U that forms a basis for W .
(iii) State the dimension of W.
(b) Find a basis for the nulls pace of $\mathrm{A}=\left[\begin{array}{cccc}3 & 4 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ 4 & -3 & 11 & 2\end{array}\right]$

QUESTION THREE (20 MARKS)

(a) If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation of a vectors space V into a vector space W , show that the range $T\{y \in W: y=T(x)$ for some $x \in V\}$ is a subspace of $\mathbf{(6 \mathbf { m k s })}$
(b) A linear mapping $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ is defined by

$$
\mathrm{T}([x, y, z])=[2 x+3 z, 3 y+2 z, 2 x+5 y]
$$

(i) Find a matrix M_{T} that represents T with respect to the standard ordered basis for \mathfrak{R}^{3}
(1 mk)
(ii) Define the vector \underline{a} if \underline{a} is in the kernel of T.
(iii) Determine the vectors which span the range of T .
(iv) Determine the nullity of M_{T}
(c) Let $\mathrm{T}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ be a linear transformation such that

$$
\mathrm{T}\left(\left[\begin{array}{l}
1 \tag{3mks}\\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathrm{T}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
0 \\
5
\end{array}\right], \text { find } \mathrm{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

QUESTION FOUR (20 MARKS)

(a) Given $\mathrm{V}_{1=(1,4,6)}, \mathrm{V}_{2}=(1,-1,1)$ and $\mathrm{V}_{3}=(-1,5,3)$ determine if $(7,4,20)$ is in $\mathrm{Sp}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$.
(b) Assume that P is a particular solution to the matrix equation $\mathrm{A} \underline{x}=\mathrm{b}$ and let N be the nulls pace of A . Show that the entire solution set to this equation is $(\underline{p}+\mathrm{n}: n \in N)$
(c) Consider the matrix $A=\left[\begin{array}{ccc}-1 & 3 & 2 \\ 0 & 1 & 1 \\ 2 & -2 & 0\end{array}\right]$
(i) Find the nulls pace of A.
(ii) Write the general solution to the equation $\mathrm{A} x=\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]$ in the form of a particular solution plus an arbitrary member of the nulls pace of A.
(d) Distinguish between a whole subspace and a proper subspace.

QUESTION FIVE (20 MKS)

(a) The planes $x+2 y+3 z=2$ and $2 x+3 y+2 z=4$ intersect along line L. Find the parametric equation of L and state its direction vector
(c) Three consecutive vertices of a parallelogram are $\mathrm{A}(2,-1,1), \mathrm{B}(3,2,-1)$ and $\mathrm{C}(-1,3,2)$. Determine the equation of the plane in which this parallelogram lies.
(c) State and prove the Schwarz inequality.
(d) Determine the angle between the vectors

$$
\underline{a}=2 \underline{i}-\underline{j}+6 \underline{k} \text { and } \underline{b}=3 \underline{i}+2 \mathrm{j}+\mathrm{k}
$$

