KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: MATH 211
- COURSE TITLE: LINEAR ALGEBRA I
- STREAM: SESSION III
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/04/2009

INSTRUCTIONS:

Answer question ONE and any other TWO Questions.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) (i) Given $\underline{a} = 3\underline{i} + 2\underline{j} + 4\underline{k}$ and $\underline{b} = -2\underline{i} + 4\underline{j} - \underline{k}$, determine $\underline{a} \ge \underline{b}$ (3 mks)

- (ii) Determine the value of λ for which the vectors $\underline{a} = 4\lambda \underline{i} + \lambda \underline{j} \underline{k}$ and $\underline{b} = \lambda \underline{i} + 2 \underline{j} + 2 \underline{k}$ are orthogonal. (3 mks)
- (b) (i) Find a linear transformation T for \Re^2 into the plane

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}$$
(6 mks)

(ii) What is meant by T being linear?

(c) Write reduced row echelon form of the system of equations below and hence determine the solution of the system. (4 mks)

(2 mks)

- $\begin{aligned} x+y-z &= 7\\ 4x-y-5z &= 4\\ 2x+2y-3z &= 0 \end{aligned}$
- d) Let $W = \{w_1, w_2, --, w_n\}$ be a non empty subset of the vector space \Re^n . Explain clearly what is meant by
 - (i)W is a subspace of \Re^n (2 mks)(ii)W is a basis for \Re^n (2 mks)
- e) (i) Derive the formula for the area of a parallelogram whose adjacent sides are $|\underline{u}|$ and $|\underline{v}|$ (4 mks)
- (ii) If \underline{u} and \underline{v} are non zero vectors in \Re^n . Show that $|\underline{u}| + |\underline{v}| \le |\underline{u}| + |\underline{v}|$ (4 mks)

QUESTION TWO (20 MKS)

(a) Given that V and W are two vector subspaces of a vector space U over a field F
 (i) Prove that V Z W is a vector subspace of U
 (4 mks)

(ii) If
$$V = \left\{ (x, y, z): x + y - 3z = 0 \right\}$$
 and $W = \left\{ (x, y, z): 2x + y + z = 0 \right\}$

determine the subspace V Z W and find a vector S which spans this subspace. (4 mks)

(2 mks)

- (b) Let W be the subspace of \Re^4 spanned by the set U = $\left\{ (1, 2, 1, 1), (0, 1, -1, 1), (1, 0, 2, 3), (1, -1, 2, 6) \right\}$
- (i) Determine whether U is a linearly independent set of not. (4 mks)
- (ii) Find a subject of U that forms a basis for W. (2 mks)

(iii) State the dimension of W.

(b) Find a basis for the nulls pace of A =
$$\begin{bmatrix} 3 & 4 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ 4 & -3 & 11 & 2 \end{bmatrix}$$
 (4 mks)

QUESTION THREE (20 MARKS)

(a) If T: V \rightarrow W is a linear transformation of a vectors space V into a vector space W,

show that the range T
$$\left\{ y \in W: y = T(x) \text{ for some } x \in V \right\}$$
 is a subspace of W (6 mks)

(b) A linear mapping T: $R^3 \rightarrow R^3$ is defined by

T([x, y, z]) = [2x + 3z, 3y + 2z, 2x + 5y]

(i) Find a matrix M_T that represents T with respect to the standard ordered basis for \Re^3 (1 mk)

- (ii) Define the vector a if a is in the kernel of T. (4 mks) (iii) Determine the vectors which span the range of T. (4 mks)(iv) Determine the nullity of M_T (2 mks)
- (c) Let T: $\Re^2 \to \Re^3$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-4\\0\\5\end{bmatrix}, \text{ find } T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)$$
(3 mks)

QUESTION FOUR (20 MARKS)

- (a) Given $V_{1=(1,4,6)}$, $V_2 = (1, -1, 1)$ and $V_3 = (-1, 5, 3)$ determine if (7, 4, 20) is in Sp (v_1, v_2, v_3) . (4 mks)
- (b) Assume that P is a particular solution to the matrix equation A x = b and let N be the nulls pace of A. Show that the entire solution set to this equation is

$$(\underline{p} + \mathbf{n}; n \in N)$$
(5 mks)

(c) Consider the matrix $\mathbf{A} = \begin{bmatrix} -1 & 3 & 2 \\ 0 & 1 & 1 \\ 2 & -2 & 0 \end{bmatrix}$

(i) Find the nulls pace of A.
(4 mks)

- (i) Find the nulls pace of A.
- (ii) Write the general solution to the equation $A x = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}$ in the form of a particular (5 mk (5 mks) solution plus an arbitrary member of the nulls pace of A.
- (d) Distinguish between a whole subspace and a proper subspace. (2 mks)

QUESTION FIVE (20 MKS)

- (a) The planes x + 2y + 3z = 2 and 2x + 3y + 2z = 4 intersect along line L. Find the parametric equation of L and state its direction vector (4 mks)
- (c) Three consecutive vertices of a parallelogram are A (2, -1, 1), B (3, 2, -1) and C (-1, 3, 2). Determine the equation of the plane in which this parallelogram lies.
 (6 mks)
- (c) State and prove the Schwarz inequality. (6 mks)
- (d) Determine the angle between the vectors $\underline{a} = 2\underline{i} - \underline{j} + 6\underline{k}$ and $\underline{b} = 3\underline{i} + 2\mathbf{j} + \mathbf{k}$ (4 mks)