

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 220

COURSE TITLE: LINEAR ALGEBRA II
STREAM: Y2S2
DAY:
WEDNESDAY
TIME:
9.00-11.00 A.M.

DATE:
08/12/2010

INSTRUCTIONS:

1. Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE (30MKS)

(a) If u and v are any two vectors in an inner product space defined as

$$
<u, v>=2 u_{1} v_{1}+u_{2} v_{2}+3 u_{3} v_{3}
$$

Is this an inner product space?
(b) Given a matrix $\mathrm{A}=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$, evaluate $e^{A t}$, where t is an arbitrary parameter.
(c) If $u=(2-5 i, 3,-2-4 i)$ and $v=(6 i, 1+i, 4+2 i)$ find $2 u+v,-2 i v$ and if $w=(4-i, 2 i, 3+2 i)$ then find $\|w\|$
(4mks)
(d) (i) What is a symmetric matrix?
(ii) Given a symmetric matrix $\mathrm{A}=\left[\begin{array}{cc}7 & 3 \\ 3 & -1\end{array}\right]$. Find an orthogonal matrix P which diagonalizes A and hence find $P^{t} A P$.
(e) (i) Define a bilinear form f on a vector space V
(ii) Show whether if given that f is a bilinear form on V then $-f$ is also a bilinear form on V , where $-f(x, y)=(-f)(x, y)$ given that $-f(x, y)=\left(a x,+b x_{2}, y\right)$

QUESTION TWO (20MKS)

(a) Given a matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}\right]$. Express A^{4} and A^{-2} in terms of A^{2}, A and I_{3} is the 3×3 identify matrix.
(10mks)
(b) Given a matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$. Use Cayley Hamilton's theorem to find the powers of A up to the fifth power. Hence write down the series $e^{A t}$.

QUESTION THREE (20MKS)

Given a 3×3 matrix $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 2\end{array}\right]$.
(a) Find the characteristic polynomial and the eigenvalues of A .
(3mks)
(b) Determine the eigenvectors corresponding to each eigenvectors λ.
(5mks)
(c) Find the A.M and G.M of each λ.
(d) (i) State Cayley - Hamilton's theorem.
(ii) Is theorem in (d) true for matrix A ?
(e) Diagonalize matrix A.

QUESTION FOUR (20MKS)
(a) What is a positive matrix?
(b) Is the given 3×3 matrix $\mathrm{A}=\left[\begin{array}{ccc}-4 & 1+i & 5-2 i \\ 1-i & 3 & 7 i \\ 5+2 i & -7 i & -1\end{array}\right]$ positive?
(c) (i) Given that $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & -4 & 8\end{array}\right]$ is a real symmetric matrix. Find a non- singular matrix P such that $P^{t} \mathrm{AP}$ is diagonal.
(ii) Hence, or otherwise find the signature of A .
(2mks)
(d) Let f be any symmetric bilinear form on $\mathrm{V}(\mathrm{F})$ and let q be the corresponding quadratic form associated with f. Derive the polarization identity.
$(1+1) f(x, y)=q(x+y)-q(x)-q(y)$, with $1+1 \neq 0$
(4mks)

QUESTION FIVE (20MKS)

(a) If u and v are orthogonal vectors in an inner product space, then state and prove the generalized Pythagoras theorem.
(b) Let R^{4} have an Eudidean inner product. Use Gram-Schmidt process to transform the following basis S into an orthonormal basis,

$$
\begin{equation*}
S=\left\{u_{1}=(0,2,1,0), u_{2}=(1,-1,0,0)=u_{3}=(1,2,0,-1), u_{4}=(1,0,0,1)\right\} \tag{16mks}
\end{equation*}
$$

