KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/20010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 220

COURSE TITLE: LINEAR ALGEBRA II

- STREAM: SESSION IV
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 11/08/2010

INSTRUCTIONS:

> Attempt question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

QUESTION ONE (30 MARKS) COMPULSORY

(a) (i) Given that $A = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$ $x = \begin{pmatrix} x \\ y \end{pmatrix}$ and $C = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$ find A^{-1} , hence solve the matrix equation Ax = c(3 mks)

(ii) Find the value of
$$\lambda$$
 if $A = \begin{bmatrix} 3 & 2\lambda & 4 \\ \lambda & 5 & 3 \\ -1 & 8\lambda & 2 \end{bmatrix}$ is a singular matrix (3 mks)

(iii) Let
$$A = \begin{bmatrix} 2 & 5 \\ -3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & -5 \\ 3 & k \end{bmatrix}$ what values of k if any will make AB = BA (3 mks)

(b) (i) Define the terms Eigenvector and Eigenvalue of a matrix A (2 mks)

- (ii) Find the Eigenvalues of matrix $A = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$ (3 mks)
- (c) (i) Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be vector in \Re^n state clearly what is meant by, V is linearly independent. (2 mks)

(ii) Let
$$V_{1=} \begin{pmatrix} 5\\0\\0 \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 7\\2\\-6 \end{pmatrix}$, $V_3 = \begin{pmatrix} 9\\4\\-8 \end{pmatrix}$. Determine if the set $\{v_1 \ v_2 \ v_3\}$ is linearly independent. (5 mks)

independent.

(iii) Show that $\{u_1, u_2, u_3\}$ are an orthogonal basis for \Re^3 respectively

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
 (3 mks)

(d) (i) Let W be the set of all vectors of the form $\begin{bmatrix} 5b + 2c \\ b \\ c \end{bmatrix}$ where b and c are arbitrary. Find

vectors u and v such that W = span $\{u, v\}$. Hence show that W is a Subspace of \Re^3

(4 mks)

(ii) Find a matrix A such that W = Col A given

$$W = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} : a, b \text{ in } \Re \right\}$$
(2 mks)

QUESTION TWO (20 MARKS)

(a) Let
$$A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$$
 find a matrix for A^k given that $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and

$$D = \begin{bmatrix} 5 & 0\\ 0 & 3 \end{bmatrix}$$
(5 mks)

(b) Show that the matrix $A = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$ satisfies the characteristics equation. (5 mks)

(c) Diagonalise the matrix
$$\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
 if possible. (10 mks)

QUESTION THREE (20 MARKS)

- (a) Determine whether $v_1 = (1, 1, 2), v_2 = (1 \ 0 \ 1)$ and $v_3 = (2, 1, 3)$ span the vector space \Re^3 (5 mks)
- (b) Let $T: \mathfrak{R}^3 \to \mathfrak{R}^3$ be the linear mapping defined by;

T(x, y, z) = (x + 2y - z); y + z, x + y - 2z. Find a basis and the dimension of the image T (5 mks)

(c) Determine whether the vectors $v_1 = (1, 2, 2, 1) v_2 = (2, 3, 4, 1)$ and $v_3 = (3, 8, 7, 5)$ in \Re^4 are linearly dependent (10 mks)

QUESTION FOUR (20 MARKS)

(a) Define a linear Transformation $T: \Re^2 \to \Re^2$ by $T(x) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$ Find the images under T if $u = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $u + v = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$, hence describe the transformation under T (4 mks)

(b) Obtain the Eigenvector of the matrix $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$ hence find $\begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}^8$ (10 mks)

(c) Show that $\{v_1, v_2, v_3\}$ is an orthonormal basis of \Re^3 where

$$V_{1} = \begin{bmatrix} \frac{3}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \end{bmatrix} \qquad V_{2} = \begin{bmatrix} \frac{-1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \qquad V_{3} = \begin{bmatrix} -\frac{1}{\sqrt{66}} \\ -\frac{-4}{\sqrt{66}} \\ \frac{7}{\sqrt{66}} \end{bmatrix}$$
(6 mks)

QUESTION FIVE (20 MARKS)

- (a) (i) Define a linear Transformation by $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$ (5 mks)
 - (ii) Write the following equations in matrix form and using the results in (i) above, find x, y and z

$$x + 2y + 3z = 6$$

 $2x + y + z = 5$
 $3x + y - 2z = 1$ (5 mks)

(b) (i) Show that the linear system below has no solution

$$x_{1} + 2x_{2} + x_{3} - 2x_{4} = 1$$

$$2x_{1} + x_{2} - x_{3} + x_{4} = 0$$

$$x_{1} - x_{2} - 2x_{3} + 3x_{4} = 1$$
(5 mks)

(ii) Write the matrix
$$A = \begin{pmatrix} 3 & -1 \\ 1 & -2 \end{pmatrix}$$
 as a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ (5 mks)